8 research outputs found

    Air temperature changes in Toruń (central Poland) from 1871 to 2010

    Get PDF
    The article presents a detailed analysis of changes in air temperature in Toruń in the period 1871–2010 on the basis of homogenised monthly, seasonal and annual air temperature series which have been newly constructed (i.e. extended by the 50 years of 1871–1920). Over the 140-year study period, a sizeable and statistically significant increase of 0.1 °C per decade was found in the air temperature in Toruń. The greatest increases occurred for spring and winter, at 0.12 and 0.11 °C, respectively. A lesser warming, meanwhile, was recorded for autumn (0.10 °C/10 years), and particularly for summer (0.07 °C/10 years). The air temperature trends are statistically significant for all seasons. Air temperature differences between the monthly averages of three analysed subperiods (1871–1900, 1901–1950 and 1951–2010) and averages for the entire period under review rarely exceeded ± 0.5 °C. In all of these periods, the highest average air temperatures occurred in July and the lowest in January. The period of 1981–2010 had the highest frequency of occurrence of very and extremely warm seasons and years. Meanwhile, the highest frequency of very and extremely cool seasons and years was recorded in the 1940s and in the nineteenth century. In the period of 1871–2010, winters shortened markedly (by 7%) and summers lengthened by 3.8%. All of the presented aspects of air temperature in Toruń, which is representative of the climate of central Poland, are in close agreement with the findings of analogous studies of the same for other areas of Poland and Central Europe

    Porównanie przewidywanej termoizolacyjności odzieży w Toruniu i Koniczynce w latach 1998-2012

    No full text
    This paper compares the predicted insulation of clothing (Iclp) in Toruń and Koniczynka, presented using a scale of evaluation of thermal environment proposed by B. Krawczyk (2000). The annual mean value of predicted insulation of clothing in urban areas of Toruń was equal to 1.0 clo, which was 0.1 less than in the agricultural area of Koniczynka. The influence of atmospheric circulation on the Iclp index was also analysed. The study used the circulation types as classified by Niedźwiedź (1981) in the Catalogue of atmospheric circulation for the Bydgoszcz-Toruń region (Przybylak and Maszewski 2009, 201 3). The frequency of occurrence of individual circulation types was examined along with their in fluence on the predicted insulation of clothing in different seasons of the year and in an annual course. During the year, the highest mean value of Iclp (1.4 clo in Koniczynka) corresponded to cyclonic situations with northerly advection, whereas the lowest value (0.8 clo in Toruń and Koniczynka) was observed for the anticyclonic wedge.Celem pracy jest porównanie przewidywanej termoizolacyjności odzieży (Iclp) w Toruniu i Koniczynce. Opracowanie wykonano dla Stacji IMGW Toruń Wrzosy oraz dla Stacji Zintegrowanego Monitoringu Środowiska Przyrodniczego w Koniczynce dla okresu 1998 – 2012. Każda z badanych stacji charakteryzuje się indywidualnymi cechami. Przewidywaną termoizolacyjności odzieży przedstawiono według skali oceny środowiska termicznego zaproponowanej przez B. Krawczyk (2000). Zbadano również wpływ cyrkulacji atmosferycznej na wskaźnik Iclp. W badaniach wykorzystano typy cyrkulacji wg klasyfikacji T. Niedźwiedzia (1981) z Katalogu cyrkulacji atmosferycznej dla Regionu Bydgosko - Toruńskiego (Przybylak i Maszewski 2009, 2013). Przeanalizowano częstość występowania poszczególnych typów cyrkulacji oraz ich wpływ na przewidywaną termoizolacyjność odzieży w poszczególnych porach roku i przebiegu rocznym

    Radiation balance in Koniczynka near Torun in the years 2011-2012

    No full text
    W artykule przedstawiono zmiany poszczególnych składowych bilansu radiacyjnego w cyklu rocznym i dobowym w Koniczynce k. Torunia w latach 2011–2012. Badania prowadzono za pomocą Net Radiometer CNR 4 fi rmy Kipp & Zonen nad powierzchnią trawiastą. W Koniczynce roczne sumy K↓ wyniosły 3901,1 MJ·m–2 w 2011 roku i 3840,1 MJ·m–2 w 2012 roku. Średnie miesięczne wartości albedo wahały się od 16 do 57%, przekraczając 80% w dniach z pokrywą śnieżną. Bilans promieniowania krótkofalowego (K*) sięgnął 3039,1 MJ·m–2 w 2011 roku i 3085,6 MJ·m–2 w 2012 roku. Wypromieniowanie długofalowe (L↑) z cieplejszej powierzchni ziemi było większe (11 431,5 MJ·m–2 w 2011 r. i 11 405,8 MJ·m–2 w 2012 r.) niż zwrotne promieniowanie długofalowe atmosfery (odpowiednio 10 032,8 i 10 050,4 MJ·m–2), stąd też bilans promieniowania długofalowego (L*) przyjął wartości ujemne (odpowiednio –1398,7 i –1355,4 MJ·m–2). Bilans radiacyjny (Q*) był ujemny w styczniu i lutym 2011 roku oraz w okresie od listopada 2011 do stycznia 2012 roku i w grudniu 2012 roku, przyjmując najmniejsze wartości w grudniu 2011 roku (–40,9 MJ·m–2). Największe wartości Q* osiągnął w czerwcu 2011 roku (386,4 MJ·m–2) i lipcu 2012 roku (341,1 MJ·m–2). W sumie w ciągu roku powierzchnia ziemi w Koniczynce otrzymała 1640,4 MJ·m–2 w 2011 roku i 1730,2 MJ·m–2 w 2012 roku. Bilans promieniowania w Koniczynce wykazuje cykliczność dobową i roczną zaburzaną przez zachmurzenie oraz parę wodną i aerozole.This article describes changes in individual components of the solar radiation balance in an annual and diurnal course at Koniczynka near Toruń in the years 2011–2012. Observations were conducted on grass-covered surfaces, using a Kipp & Zonen CNR 4 net radiometer. At Koniczynka, the annual total incoming solar radiation (K↓) amounted to 3901.1 MJ·m–2 in 2011 and 3840.1 MJ·m–2in 2012. Mean monthly values of the albedo ranged from 16 to 57% and exceeded 80% when the ground was covered by snow. The short wave radiation balance (K*) reached 3039.1 MJ·m–2 in 2011 and 3085.6 MJ·m–2 in 2012. The upward long wave terrestrial radiation (L↑) emitted from warmer surfaces was greater (11,431.5 MJ.m–2 in 2011 and 11,405.8 MJ·m–2 in 2012) than the downward long wave atmospheric radiation (10,032.8 MJ·m–2 and 10,050.4 MJ·m–2, respectively), therefore the long wave radiation balance (L*) was negative (–1398.7 MJ·m–2 and –1355.4 MJ·m–2, respectively). The net radiation balance (Q*) was negative in January and February 2011, and from November 2011 until January 2012, as well as in December 2012, with the lowest values in December 2011 (–40.9 MJ·m–2). The highest values of Q* were observed in June 2011 (386.4 MJ·m–2) and July 2012 (341.1 MJ·m–2). All in all, the ground surface at Koniczynka received 1640.4 MJ·m–2 in 2011 and 1730.2 MJ·m–2 in 2012. The net radiation balance at Koniczynka follows a diurnal and an annual cycle, disturbed by cloudiness, water vapour and aerosols

    Meteorological droughts in the region of the station of integrated environmental monitoring in Koniczynka (Chełmno Lakeland) in the years 1951-2010

    No full text
    W pracy przedstawiono problem występowania susz meteorologicznych na rolniczym obszarze zlewni Strugi Toruńskiej. Analizę zmienności miesięcznych susz meteorologicznych w latach 1951-2010 przeprowadzono na podstawie danych ze stacji Zintegrowanego Monitoringu Środowiska Przyrodniczego w Koniczynce (Pojezierze Chełmińskie). Jest to rejon charakteryzujący się niewielką sumą roczną opadów - 548 mm, o bardzo dużej ich zmienności z roku na rok (od 307 mm w 1951 r. do 1050 mm w 1980 r.). W poszczególnych miesiącach zmienność opadów jest jeszcze większa (współczynnik zmienności zmienia się od 49% w marcu do 93% w czerwcu). Intensywność suszy w każdym miesiącu oceniono za pomocą wskaźnika standaryzowanego opadu SPI (Standardized Precipitation Index). W Koniczynce w badanym wieloleciu susze pojawiały się we wszystkich miesiącach roku. Stwierdzono 73 okresy suszy, które łącznie trwały 186 miesięcy, czyli przez 26% miesięcy badanego wielolecia. Najczęściej pojawiały się jednomiesięczne susze (28 razy), oraz dwu- (15 razy) i trzymiesięczne (po 13 razy). Przeciętny okres suszy trwał 2,5 miesiąca, a najdłuższy - 10 miesięcy. Najwięcej ekstremalnych susz pojawiło się w marcu, kwietniu, sierpniu i grudniu, silnych susz w lutym i we wrześniu, a umiarkowanych w sierpniu i w grudniu. Dla rolnictwa istotne znaczenie mają susze meteorologiczne w okresie wiosennym (III-V) i letnim (VI-VIII). W wieloleciu 1951-2010 trwały one łącznie 96 miesięcy, co stanowi 13% badanego okresu i powodowały opóźnienie siewu i wschodów roślin lub całkowite ich usychanie. W niektórych latach, np. w 1971, 1975, 1996, 2003 r., wczesnowiosenną suszę meteorologiczną poprzedzała dodatkowo susza w miesiącach zimowych.The paper presents the problem of meteorological droughts in an agricultural catchment of the Struga Toruńska. The analysis of monthly variation of meteorological droughts between 1951 and 2010 was based on data from the Station of Integrated Environmental Monitoring in Koniczynka (Chełmno Lakeland). The region is characterized by a small sum of annual rainfall (548 mm), and a high year-to-year variability (from 307 mm in 1951 to 1050 mm in 1980). For particular months, the variability coefficient was even higher ranging from 49% for March to 93% for June. The intensity of drought in each month was assessed using Standardized Precipitation Index (SPI). In Koniczynka, droughts were recorded in all months of the year. Seventy three periods of drought were recorded which lasted in total 186 months i.e. 26% of the study period. Most frequent were one-month droughts (28), two-month (15) and three-month (13) droughts. The average dry period lasted 2.5 months; the longest lasted 10 months. The extreme droughts appeared most often in March, April, August and December (3 cases in each), severe droughts - in February and in September (4), and moderate droughts in August and December (7). Meteorological droughts particularly important for agriculture are those in the spring (March-May) and summer (June-August) time. In the years 1951-2010 they lasted 96 months in total, which represented 13% of the study period (March-August). They caused delayed sowing and sprouting of plants or complete plant wilting. Moreover, in some years (1971, 1975, 1996, 2003) meteorological drought in the winter months preceded the early spring drought

    Diversity of Local Climate in Toruń – Outline of the Project and Preliminary Results of Investigations

    No full text
    This paper presents the outline, methodology, and the state of the realization of a research project. Its goal is to study the influence of environmental, dynamic, and anthropogenic factors on meteorological and biometeorological conditions. It is also planned to work out a map of Toruń topoclimates. The research was performed for over a year on the basis of a network of 26 measurement points selected in different places in Toruń and its neighbourhood with automatic registration of basic meteorological elements and thermal imageries from Terra ASTER satellite. The environment geographic information system created in ArcGIS is used for interpolation of individual meteorological elements and for distribution of biometeorological indices. Various spatial data were used such as land cover, land use, localization and height of buildings, digital elevation model (DEM), and present-day colour orthophotomap. Project results relating to the variability of Toruń bioclimatic conditions may be used for organization of tourism and recreation, and the created map of topoclimates for spatial planning and further development of the city.Praca prezentuje założenia, metodykę oraz stan realizacji projektu naukowo-badawczego, którego celem jest zbadanie wpływu czynników środowiskowych, dynamicznych i antropogenicznych na warunki meteorologiczne i biometeorologiczne wraz z planowanym opracowaniem mapy topoklimatów miasta Torunia. Badania prowadzone są od ponad roku w oparciu o założoną w wybranych miejscach Torunia i okolic sieć 26 punktów pomiarowych z automatyczną rejestracją podstawowych elementów meteorologicznych oraz docelowo satelitarne obrazy termalne pozyskane z satelity Terra ASTER. Zbudowany w środowisku ArcGIS system informacji geograficznej (GIS) wykorzystywany jest do interpolacji rozkładu poszczególnych elementów meteorologicznych oraz rozkładu wskaźników biometeorologicznych. Do tego systemu pozyskano i wprowadzono już wiele danych przestrzennych, jak pokrycie/użytkowanie terenu, lokalizacja i wysokość budynków, model wysokościowy terenu (DEM) oraz aktualną barwną ortofotomapę. Uzyskane w projekcie wyniki dotyczące zmienności warunków bioklimatycznych Torunia będą mogły być wykorzystane w organizacji turystyki i rekreacji, a utworzona mapa topoklimatów w planowaniu przestrzennym i dalszym rozwoju miasta

    The diversity of wind speed and directions in Torun (central Poland) in 2012

    No full text

    Diversity of air humidity in the area of Torun in 2012

    No full text
    corecore