52 research outputs found

    Comparison of complication risk for open carpal tunnel release: In-office versus operating room settings

    Get PDF
    BACKGROUND: Performing open carpal tunnel release (oCTR) in an office-based procedure room setting (PR) decreases surgical costs when compared with the operating room (OR). However, it is unclear if the risk of major medical, wound, and iatrogenic complications differ between settings. Our purpose was to compare the risk of major medical complications associated with oCTR between PR and OR settings. METHODS: Utilizing the MarketScan Database, we identified adults undergoing isolated oCTR between 2006 and 2015 performed in PR and OR settings. ICD-9-CM and/or CPT codes were used to identify major medical complications, surgical site complications, and iatrogenic complications within 90 days of oCTR. Multivariable logistic regression was used to compare complication risk between groups. RESULTS: Of the 2134 PR and 76,216 OR cases, the risk of major medical complications was 0.89% (19/2134) and 1.20% (914/76,216), respectively, with no difference observed in the multivariable analysis (adjusted odds ratio [OR] 0.84; 95% CI 0.53–1.33; P=0.45). Risk of surgical site complications was 0.56% (12/2134) and 0.81% (616/76,216) for the PR and OR, respectively, with no difference in the multivariable analysis (OR 0.68; 95% C.I. 0.38–1.22; P=0.19). Iatrogenic complications were rarely observed (PR 1/2134 [0.05%], OR 71/76,216 [0.09%]), which precluded multivariable modeling. CONCLUSION: These results support a similar safety profile for both the PR and OR surgical settings following oCTR with similar pooled major medical complications, pooled wound/surgical site complications, and iatrogenic complications

    From Human Days to Machine Seconds: Automatically Answering and Generating Machine Learning Final Exams

    Full text link
    A final exam in machine learning at a top institution such as MIT, Harvard, or Cornell typically takes faculty days to write, and students hours to solve. We demonstrate that large language models pass machine learning finals at a human level, on finals available online after the models were trained, and automatically generate new human-quality final exam questions in seconds. Previous work has developed program synthesis and few-shot learning methods to solve university-level problem set questions in mathematics and STEM courses. In this work, we develop and compare methods that solve final exams, which differ from problem sets in several ways: the questions are longer, have multiple parts, are more complicated, and span a broader set of topics. We curate a dataset and benchmark of questions from machine learning final exams available online and code for answering these questions and generating new questions. We show how to generate new questions from other questions and course notes. For reproducibility and future research on this final exam benchmark, we use automatic checkers for multiple-choice, numeric, and questions with expression answers. We perform ablation studies comparing zero-shot learning with few-shot learning and chain-of-thought prompting using GPT-3, OPT, Codex, and ChatGPT across machine learning topics and find that few-shot learning methods perform best. We highlight the transformative potential of language models to streamline the writing and solution of large-scale assessments, significantly reducing the workload from human days to mere machine seconds. Our results suggest that rather than banning large language models such as ChatGPT in class, instructors should teach students to harness them by asking students meta-questions about correctness, completeness, and originality of the responses generated, encouraging critical thinking in academic studies.Comment: 9 page

    Comparing the Invasibility of Experimental “Reefs” with Field Observations of Natural Reefs and Artificial Structures

    Get PDF
    Natural systems are increasingly being modified by the addition of artificial habitats which may facilitate invasion. Where invaders are able to disperse from artificial habitats, their impact may spread to surrounding natural communities and therefore it is important to investigate potential factors that reduce or enhance invasibility. We surveyed the distribution of non-indigenous and native invertebrates and algae between artificial habitats and natural reefs in a marine subtidal system. We also deployed sandstone plates as experimental ‘reefs’ and manipulated the orientation, starting assemblage and degree of shading. Invertebrates (non-indigenous and native) appeared to be responding to similar environmental factors (e.g. orientation) and occupied most space on artificial structures and to a lesser extent reef walls. Non-indigenous invertebrates are less successful than native invertebrates on horizontal reefs despite functional similarities. Manipulative experiments revealed that even when non-indigenous invertebrates invade vertical “reefs”, they are unlikely to gain a foothold and never exceed covers of native invertebrates (regardless of space availability). Community ecology suggests that invertebrates will dominate reef walls and algae horizontal reefs due to functional differences, however our surveys revealed that native algae dominate both vertical and horizontal reefs in shallow estuarine systems. Few non-indigenous algae were sampled in the study, however where invasive algal species are present in a system, they may present a threat to reef communities. Our findings suggest that non-indigenous species are less successful at occupying space on reef compared to artificial structures, and manipulations of biotic and abiotic conditions (primarily orientation and to a lesser extent biotic resistance) on experimental “reefs” explained a large portion of this variation, however they could not fully explain the magnitude of differences

    Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation.

    Get PDF
    During gastrulation, cell types from all three germ layers are specified and the basic body plan is established 1 . However, molecular analysis of this key developmental stage has been hampered by limited cell numbers and a paucity of markers. Single-cell RNA sequencing circumvents these problems, but has so far been limited to specific organ systems 2 . Here, we report single-cell transcriptomic characterization of >20,000 cells immediately following gastrulation at E8.25 of mouse development. We identify 20 major cell types, which frequently contain substructure, including three distinct signatures in early foregut cells. Pseudo-space ordering of somitic progenitor cells identifies dynamic waves of transcription and candidate regulators, which are validated by molecular characterization of spatially resolved regions of the embryo. Within the endothelial population, cells that transition from haemogenic endothelial to erythro-myeloid progenitors specifically express Alox5 and its co-factor Alox5ap, which control leukotriene production. Functional assays using mouse embryonic stem cells demonstrate that leukotrienes promote haematopoietic progenitor cell generation. Thus, this comprehensive single-cell map can be exploited to reveal previously unrecognized pathways that contribute to tissue development

    The Spirit of the Reformation

    No full text
    No abstract available

    Ralph J. Tyser Collection

    No full text
    Ralph J. Tyser was a 1940 graduate of the University of Maryland and a major university supporter. Tyser Tower, built in 1991, was named for him. His portrait hangs in Van Munching Hall in recognition of his support for the building's auditorium. This collection contains video tapes of the press box dedication ceremony in September 1991, as well as certificates and plaques awarded to Tyser
    corecore