26 research outputs found

    Variation in plasma calcium analysis in primary care in Sweden - a multilevel analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary hyperparathyroidism (pHPT) is a common disease that often remains undetected and causes severe disturbance especially in postmenopausal women. Therefore, national recommendations promoting early pHPT detection by plasma calcium (P-Ca) have been issued in Sweden. In this study we aimed to investigate variation of P-Ca analysis between physicians and health care centres (HCCs) in primary care in county of Skaraborg, Sweden.</p> <p>Methods</p> <p>In this cross sectional study of patients' records during 2005 we analysed records from 154 629 patients attending 457 physicians at 24 HCCs. We used multilevel logistic regression analysis (MLRA) and adjusted for patient, physician and HCC characteristics. Differences were expressed as median odds ratio (MOR).</p> <p>Results</p> <p>There was a substantial variation in number of P-Ca analyses between both HCCs (MOR<sub>HCC </sub>1.65 [1.44-2.07]) and physicians (MOR<sub>physician </sub>1.95 [1.85-2.08]). The odds for a P-Ca analysis were lower for male patients (OR 0.80 [0.77-0.83]) and increased with the number of diagnoses (OR 25.8 [23.5-28.5]). Sex of the physician had no influence on P-Ca test ordering (OR 0.93 [0.78-1.09]). Physicians under education ordered most P-Ca analyses (OR 1.69 [1.35-2.24]) and locum least (OR 0.73 [0.57-0.94]). More of the variance was attributed to the physician level than the HCC level. Different mix of patients did not explain this variance between physicians. Theoretically, if a patient were able to change both GP and HCC, the odds of a P-Ca analysis would in median increase by 2.45. Including characteristics of the patients, physicians and HCCs in the MLRA model did not explain the variance.</p> <p>Conclusions</p> <p>The physician level was more important than the HCC level for the variation in P-Ca analysis, but further exploration of unidentified contextual factors is crucial for future monitoring of practice variation.</p

    Fracture Mechanisms of a Thin Elastic Plastic Laminate

    No full text

    3D Strain Field Evolution and Failure Mechanisms in Anisotropic Paperboard

    No full text
    Background: Experimental analyses of the 3D strain field evolution during loading allows for better understanding of deformation and failure mechanisms at the meso- and microscale in different materials. In order to understand the auxetic behaviour and delamination process in paperboard materials during tensile deformation, it is essential to study the out-of-plane component of the strain tensor that is, in contrast to previous 2D studies, only achievable in 3D. Objective: The main objective of this study is to obtain a better understanding of the influence of different out-of-plane structures and in-plane material directions on the deformation and failure mechanisms at the meso- and microscale in paperboard samples. Methods: X-ray tomography imaging during in-situ uniaxial tensile testing and Digital Volume Correlation analysis was performed to investigate the 3D strain field evolution and microscale mechanical behaviour in two different types of commercial paperboards and in two material directions. The evolution of sample properties such as the spatial variation in sample thickness, solid fraction and fibre orientation distribution were also obtained from the images. A comprehensive analysis of the full strain tensor in paperboards is lacking in previous research, and the influence of material directions and out-of-plane structures on 3D strain field patterns as well as the spatial and temporal quantification of the auxetic behaviour in paperboard are novel contributions. Results: The results show that volumetric and deviatoric strain, dominated by the out-of-plane normal strain component of the strain tensor, localize in the out-of-plane centre already in the initial linear stress-strain regime. In-plane strain field patterns differ between samples loaded in the Machine Direction (MD) and Cross Direction (CD); in MD, strain localizes in a more well-defined zone close to the notches and the failure occurs abruptly at peak load, resulting in angular fracture paths extending through the stiffer surface planes of the samples. In CD, strain localizes in more horizontal and continuous bands between the notches and at peak load, fractures are not clearly visible at the surfaces of CD-tested samples that appear to fail internally through more well-distributed delamination. Conclusions: In-plane strain localization preceded a local increase of sample thickness, i.e. the initiation of the delamination process, and at peak load, a dramatic increase in average sample thickening occurred. Different in-plane material directions affected the angles and continuity of the in-plane strain patterns as well as the sample and fracture properties at failure, while the out-of-plane structure affected how the strain fields distributed within the samples

    Modeling and simulation of paperboard edge wicking

    No full text
    When liquid packaging board is made aseptic in the filling machine the unsealed edges of the board are exposed to hydrogen peroxide. A high level of liquid penetration may lead to aesthetic as well as functional defects. To be able to make a priori predictions of the edge wicking properties of a certain paperboard material is therefore of great interest to paper industry as well as to packaging manufacturers. The aim of this paper is to present a new analytical theory for prediction of the edge wicking properties of paperboard. The theory is based on Darcy's law and the ideal gas law to describe the physical behavior of water flow in paperboard. The theory is compared to a recently published multi-scale framework and with pressurized edge wick experiments. The agreement is very good for paperboard samples of different sizes. The conclusion from the work is that both analytical theory and detailed simulations are useful to predict edge wicking properties of paperboard material
    corecore