59 research outputs found

    Effective stresses and permeability in consolidating mud

    Get PDF
    Measurements of density and pore pressures for consolidation experiments on estuarine mud are analyzed. Results for bulk permeability, local permeability and effective stress are presented and simple relationships between each of these parameters and the density are proposed. The problems associated with the accuracy of the measurements and their consequences on the determination of closure equations for consolidation models are discussed

    Impact assessment for the improved four boundary conditions (at bed, free-surface, land-boundary and offshore-boundary) on coastal hydrodynamics and particulate transport

    Get PDF
    The FIELD_AC project aims at providing an improved operational service for coastal areas and at generating added value for shelf and regional scale predictions. Coastal-zone oceanographic predictions seldom appraise the land discharge as a boundary condition. River fluxes are sometimes considered, but neglecting their 3D character, while the "distributed" continental run-off is not taken into consideration. Moreover, many coastal scale processes, particularly those relevant in geographically restricted domains (coast with harbors or river mouth areas), are not well parametrized in present simulations.Work package 3 dedicated to Boundary Fluxes aims to establish and use the best possible boundary conditions for coastal water quality modelling. On this scale, all boundaries become important. For the land boundary side the needed products are distributed and point wise run-off both quantitatively and qualitatively. For the offshore boundary condition, 3D current, water quality field, and wave spectra will be used. For the atmospheric boundary, products from local scale meteorological models (wind, atmospheric pressure and rainfall) are needed. For the seabed, boundary information on sediment composition, bedforms and bathymetry and bio-geo-chemical parameters is essential.This report addresses the impact assessment for improvements in the four boundary conditions (boundary fluxes from land, free-surface boundary condition, seabed boundary condition and open boundary fluxes) on coastal hydrodynamics and particulate transport. The description of the improved four boundary conditions is followed by examples of concrete impact assessment of the theory into the Catalan coast, Liverpool Bay, German Bight and Gulf of Venice

    Design features of the upcoming Coastal and Ocean Basin in Ostend, Belgium, for marine renewable energy applications

    Get PDF
    The new Coastal and Ocean Basin (COB) located at the Greenbridge Science Park in Ostend, Belgium is under construction since February 2017. The laboratory will provide a versatile facility that will make a wide range of physical modelling studies possible, including the ability to generate waves in combination with currents and wind at a wide range of model scales. The facility is serving the needs in Flanders, Belgium, in the fields of mainly offshore renewable energy and coastal engineering. The COB will allow users to conduct tests for coastal and offshore engineering research and commercial projects. The basin will have state-of-the-art generating and absorbing wavemakers, a current generation system, and a wind generator. It will be possible to generate waves and currents in the same, opposite and oblique directions. The basin is expected to be operational in 2019. This paper presents an overview of the basin’s capabilities, the ongoing work, and selected results from the design of the COB
    • …
    corecore