607 research outputs found
Saprolegnia diclina IIIA and S. parasitica employ different infection strategies when colonizing eggs of Atlantic salmon, Salmo salar L.
Acknowledgements The work has been funded by the European Commission through the EU Marie Curie ITN project SAPRO (238550) (MMS, AW). We would also like to acknowledge support from the BBSRC and the University of Aberdeen (PvW) and Landcatch and AquaGen for providing salmon eggs. Elin Rolen's assistance with sequencing of the strains is highly appreciated.Peer reviewedPublisher PD
Probing dynamics of an electron-spin ensemble via a superconducting resonator
We study spin relaxation and diffusion in an electron-spin ensemble of
nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing
magnetic field (80-300 mT). Measurements exploit mode- and
temperature-dependent coupling of hyperfine-split sub-ensembles to the
resonator. Temperature-independent spin linewidth and relaxation time suggest
that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble
by resonant pumping of another indicates fast cross-relaxation compared to spin
diffusion, with implications on use of sub-ensembles as independent quantum
memories.Comment: 5 pages, 5 figures, and Supplementary Information (2 figures
Surface wave control for large arrays of microwave kinetic inductance detectors
Large ultra-sensitive detector arrays are needed for present and future
observatories for far infra-red, submillimeter wave (THz), and millimeter wave
astronomy. With increasing array size, it is increasingly important to control
stray radiation inside the detector chips themselves, the surface wave. We
demonstrate this effect with focal plane arrays of 880 lens-antenna coupled
Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field
measurements of the MKID optical response versus the position on the array of a
reimaged optical source. We demonstrate that the optical response of a detector
in these arrays saturates off-pixel at the dB level compared to the
peak pixel response. The result is that the power detected from a point source
at the pixel position is almost identical to the stray response integrated over
the chip area. With such a contribution, it would be impossible to measure
extended sources, while the point source sensitivity is degraded due to an
increase of the stray loading. However, we show that by incorporating an
on-chip stray light absorber, the surface wave contribution is reduced by a
factor 10. With the on-chip stray light absorber the point source response
is close to simulations down to the dB level, the simulation based on
an ideal Gaussian illumination of the optics. In addition, as a crosscheck we
show that the extended source response of a single pixel in the array with the
absorbing grid is in agreement with the integral of the point source
measurements.Comment: accepted for publication in IEEE Transactions on Terahertz Science
and Technolog
Eliminating stray radiation inside large area imaging arrays
With increasing array size, it is increasingly important to control stray
radiation inside the detector chips themselves. We demonstrate this effect with
focal plane arrays of absorber coupled Lumped Element microwave Kinetic
Inductance Detectors (LEKIDs) and lens-antenna coupled distributed quarter
wavelength Microwave Kinetic Inductance Detectors (MKIDs). In these arrays the
response from a point source at the pixel position is at a similar level to the
stray response integrated over the entire chip area. For the antenna coupled
arrays, we show that this effect can be suppressed by incorporating an on-chip
stray light absorber. A similar method should be possible with the LEKID array,
especially when they are lens coupled.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0214
Recommended from our members
Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation
This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi
Modeling and Testing Superconducting Artificial CPW Lines Suitable for Parametric Amplification
Achieving amplification with high gain and quantum-limited noise is a
difficult problem to solve. Parametric amplification using a superconducting
transmission line with high kinetic inductance is a promising technology not
only to solve this problem but also adding several benefits. When compared with
other technologies, they have the potential of improving power saturation,
achieving larger fractional bandwidths and operating at higher frequencies. In
this type of amplifiers, selecting the proper transmission line is a key
element in their design. Given current fabrication limitations, traditional
lines such as coplanar waveguides (CPW), are not ideal for this purpose since
it is difficult to make them with the proper characteristic impedance for good
matching and slow-enough phase velocity for making them more compact.
Capacitively-loaded lines, also known as artificial lines, are a good solution
to this problem. However, few design rules or models have been presented to
guide their accurate design. This fact is even more crucial considering that
they are usually fabricated in the form of Floquet lines that have to be
designed carefully to suppress undesired harmonics appearing in the parametric
process. In this article we present, firstly, a new modelling strategy, based
on the use of electromagnetic-simulation software, and, secondly, a
first-principles model that facilitate and speed the design of CPW artificial
lines and of Floquet lines made out of them. Then, we present comparisons with
experimental results that demonstrate their accuracy. Finally, the theoretical
model allows to predict the high-frequency behaviour of the artificial lines
showing that they are good candidates for implementing parametric amplifiers
above 100 GHz.Comment: 7 pages, 11 figures, submitted to IEEE Transactions on Applied
Superconductivit
- ā¦