3,767 research outputs found
Compressive and tensile axial strain reduced critical currents in Bi-2212 conductors
Mono and multifilamentary wires of BSCCO-2212 in Ag matrix are investigated in an axial strain experiment. The superconducting samples are soldered to a substrate that is bend in order to achieve a compressive or tensile axial strain. The I/sub c/-strain dependence is measured in magnetic fields up to 16 T at 4.2 K and the strain is varied from -2% to +1.2%. In these Bi-2122 samples any strain-induced I/sub c/ reduction is irreversible. Moreover a significant rise in I/sub c/ was never observed after changing the strain. Special attention is paid to the tensile axial strain regime (0 to 0.4%). A small but significant reduction in I/sub c/ is found in this case. The strain behaviour of these wires indicates that the I/sub c/ reduction is due to fractures in the superconducting filament
Field dependence of the critical current and its relation to the anisotropy of BSCCO conductors and coils
The design of HTS magnets is often based on the properties of a number of short samples that are presumed to be representative of the conductor to be used. Variability in conductor properties and inhomogeneity in the magnetic field distribution within the magnets, coupled with conductor anisotropy, provide a significant challenge to accurately predict the field dependence of the magnet critical current. This work is based on measured superconducting properties of Bi-2212 and Bi-2223 conductors at 4.2 K in parallel and perpendicular magnetic fields up to 33 T. Properties of double pancake units and stacks, from the same or similar conductor batches, are presented, based on measurements at self-field and in applied co-axial background magnetic fields up to 19 T. Modeling of this data is based on short sample properties in perpendicular field; the average grain misalignment is used as the parameter to quantify the anisotropy. Correlations and discrepancies between the measured data and models based on short sample data are discussed for Bi-2212 and Bi-2223 conductors
A short history of the first 3 years of the Community Genetics Network and its newsletter
When in 2007 it became clear that the Karger journal Community Genetics would change its name and scope, the first author started to establish an international, multidisciplinary e-mail network and a newsletter with papers authored by the members of the network. This paper reports on the first 3Â years of the network. At the end of the 3-year period, there were 858 members, 50 newsletters had appeared, and almost 1,500 different papers from 458 journals had been cited. This model may serve as an example for others who want to bring together those sharing a common interest
Minimizing weighted total earliness, total tardiness and setup costs
The paper considers a (static) portfolio system that satisfies adding-up contraints and the gross substitution theorem. The paper shows the relationship of the two conditions to the weak dominant diagonal property of the matrix of interest rate elasticities. This enables to investigate the impact of simultaneous changes in interest rates on the asset demands.
Superconducting magnet system for the ATLAS detector at CERN
The ATLAS Collaboration has started the construction of the superconducting magnet system of the ATLAS Experiment which will be installed in the ring of the new Large Hadron Collider at CERN, operational in year 2005. The ATLAS detectors require, for the particle separation, a specific distribution of magnetic field that will be generated by a system of superconducting coils. The system with overall dimensions of 20 meter diameter and 26 meter length consists of three toroidal magnets and a 2.5 m diameter central solenoid. The system is unique in size and complexity. In this paper, the various magnets are introduced as well as the common infrastructure and services required. The status of the project is also reviewed. (7 refs)
Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory
The International AXion Observatory (IAXO) will incorporate a new generation
detector for axions, a hypothetical particle, which was postulated to solve one
of the puzzles arising in the standard model of particle physics, namely the
strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity
to the coupling between axions and photons of one order of magnitude beyond the
limits of the current state-of-the-art detector, represented by the CERN Axion
Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field
distributed over a very large volume to convert solar axions into x-ray
photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large
superconducting toroidal magnet is currently being designed at CERN to provide
the required magnetic field. The new toroid will be built up from eight, one
meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in
diameter and 22 m in length. It is designed to realize a peak magnetic field of
5.4 T with a stored energy of 500 MJ. The magnetic field optimization process
to arrive at maximum detector yield is described. In addition, force and stress
calculations are performed to select materials and determine their structure
and sizing. Conductor dimensionality, quench protection and the cryogenic
design are dealt with as well.Comment: 5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond.
23 (ASC 2012 conference special issue
Status report of the three phase 25 kA, 1.5 kW thermally switched superconducting rectifier, transformer and switches
A 25 kA, 1.5 kW superconducting rectifier system has been developed. This rectifier system working like an a.c.-d.c, converter with a primary current of 35 A at 0.1Hz, will energize a 25 kA coil with an average power of 5.4 MJ/hr and a proposed energy efficiency of at least 96%. Such a highly efficient device might work instead of a 'normal' rectifier and a pair of 25 kA current leads with its energy loss of at least 2 W/kA. The 25 kA current step-up transformer has been tested succesfully concerning its maximum current (26.4 kA) and a.c. losses (2 W at 25 kA and 0.1Hz). A conductor for the 25 kA switches has been manufactured and processed into the switching system. Their construction is described
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
- âŠ