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der Rijksuniversiteit Groningen, Netherlands*

(Received 6 July 1972)

INTRODUCTION

The function of the three semicircular canals of the vertebrate labyrinth which
are situated in three approximately perpendiailar planes is the detection of angular
accelerations. Because of the inertia of the liquid (endolymph) in the membranous
canal a fluid current is set up in the endolymph by angular acceleration. This endo-
lymph current displaces the cupula in the ampulla. The cupula-sensory system
converts the mechanical signal into a train of action potentials travelling to the
brain, simultaneously with the actual deformation of the cupula. However, during small
physiological accelerations the displacements of the cupula are submicroscopical.
So this actual deformation can only be studied with a mathematical model, which
closely approaches the real geometry of the growing semicircular canal. The model
of the semicircular canal is a tube in a closed loop of non-circular shape with
a narrow duct and a wide part, the cross-section being circular along the
whole length of the narrow duct. The tube has rigid walls without bifurcations (the
interference with the endolymphatic current by the two other canals is neglected)
and contains an incompressible liquid and an elastic cupula. Since the common
semicircular canal (for birds and fish) does not conform to a torus in shape, the
generally accepted overcritically damped torsion pendulum model (Egmond, 1952;
Groen, 1952; Jones, 1963) is not valid for a precise dimensional study of the semicircular
canal (see Fig. 1). The equation of motion for the endolymph in any semicircular
canal, including a non-circular region, will be used. In this overcritically damped
second-order model, linear displacement, linear velocity and linear acceleration of
the endolymph are related to the angular acceleration (de Vries, 1956).

This equation will be solved for three different kinds of stimuli, namely step-
velocity input, step in angular acceleration and sinusoidal angular oscillations. The
endolymph displacements caused by these stimuli will depend on the dimensions
of the semicircular canal. A mechanical sensitivity factor can be derived and expressed
in geometrical parameters of any semicircular canal. This provides the theoretical
basis of a previous study on dimensions and sensitivities of semicircular canals in
fish (ten Kate, 1969, 1970). The sensitivity of the canal may also inform us about
the actual deformation of the cupula during small physiological accelerations. In
connexion with this it should be noticed that no sufficient evidence is available for
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the generally accepted model in which the cupula moves like a door. (See comments
below, formula (26).) Furthermore, on the basis of data derived from the semicircular
canals of pike, amplitude and phase diagrams for sinusoidal angular oscillations will
be predicted. These theoretical consequences can be checked in the future by
electrophysiological techniques and are already indicated by some eye characteristics
of pike of different sizes.

THEORY

The equation of motion for the endolymph in the semicircular canal is derived from
the requirement of equilibrium of forces. The acceleration pressure Pa = zApa is
opposed mainly by the friction pressure Wx of the streaming fluid in the narrow
duct of the semicircular canal but also by the inertial pressure Mx of the endolymph
and the directive pressure Fx delivered by the ' elastic' cupula (denotation of the
symbols is given in a list at the end of the article, see also Fig. 1). Accordingly the
equation of motion is

MX+Wx+Fx = zApa, (1)

where M = p(li+l^) g/cm2, (2)

W = 8^ r~2 dyne sec/cm3, (3)

F (dyne/cm3) = directive pressure per cm displacement of the fluid in the narrow
duct.

Note that in the equation of motion: (i)x,x and £ are linear endolymph parameters
instead of the angular parameters <j>, <j>, <j> in the torsion-pendulum theory; (2) the
system constants M, W and F differ from the moments n, 6 and A in the torsion-
pendulum theory; (3) any area A enclosed by a tube of an arbitrary shape can be
substituted in the equation of motion.

The torsion-pendulum theory is restricted to a torus with a radius R and A = nR2.
In the model the flow is assumed to be laminar in the narrow duct. This assumption
is justifiable with the small value of the Reynolds number (=== io~*) for physiological
stimuli and the negligibly small value of the average velocity of the secondary flow
(caused by Coriolis' forces) with respect to the ' inertial' flow (see Grohmann, 1968).

In (1) different time-dependent angular accelerations can be substituted by step-
velocity input, step in constant angular acceleration or sinusoidal angular oscillation.

(a) Step-velocity input
At the moment of abrupt stopping after a constant angular velocity (1) changes

into

*+(W\M)x + (F/M)x = o (4)

with the initial conditions

t = o,x = o,x = yzAfa + Q-1 = yC (5)

This is justified by earlier work (ten Kate, 1969).
It follows from (4) and (5) that the relation between x and t is

x = CyMjW {exp(-FtjW)- exp(- Wt/M) }. (6)
• A list of symbol* used is given on page 365.
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(7)

Fig. i. Locations of the symbols used in the study of the semicircular canal. A, Enclosed
area by the average canal; am, ampulla; cr, crista; at, cupula, h^, cupula height; llt length of
canal duct; /,, length of the wide part; Oa, cross-section of the ampulla at the summit of the
crista; 2r0, inner diameter of the duct.

This function has the maximum value

JCO = C(M/W)B7 = {Apr*y){wQ,

where B=== i (see ten Kate, 1969).
This expression can also be deduced from the Navier-Stokes equations of the

fluid dynamics in a torus by integration of the average velocity. This integration
results in

*b = —1(i r i~iri) (8)

(derived formula (2) of the article of Grohmann, 1968).

Equation (8) is reduced to (7) by substituting in (8)

The use of the simple second-order system is justified by this fact. (See Steer, 1967.)

(b) Constant acceleration input

Equation (1) is rewritten

H+{WIM)x + {FjM)x = 2Aa(l1 + l^)-1 = Ca (9^

with the initial conditions

t = o, x = o, H = 2A(l1 + l2)~
1 a = Ca. (10)

The general solution of (9) is simplified by first-order approximation to the dis-
placement

= (CaM/F) [1 - exp( - Ft/W)]. (11)
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Fig. 2. (A) Individual values of G/Aj of the horizontal semicircular canal plotted against
body length L in cm. (B) The threshold values yt of pikes of different sizes plotted against
body length L in cm.

The approximate formula for the velocity of the endolymph is

x = (CaMlW)[exp(-FtlW)-exp(-WtlM)]. (12)

Relation (12) is of the same form as (6).
The first term of the Taylor series of (11) is

x = C(MIW)at = (Artpat)/^) (13)

This is the well-known Mulder's law (see also Fernandez, 1968).

(c) Sinusoidal angular oscillation

(1) is rewritten as

x + (WIM)x + (F/M)x = 2,4(/1 + /2)-
1amsinw* = C^sinwf. (14)

The solution without transients is

x = Cam {(o)l-^) + (WIM)^}-is\n(cot-Q), (15)

where wg = FjM and tang = ^WjM)^-^)-1. (16)

Substituting am = — w2U in the amplitude factor of (15) yields

xm = -C(wU) {K W - i -w) 2 + ( W W } - i . (17)
If w = o)0 (17) becomes

xm= -C{MIW)Uw0. (18)

The values of xm given in (17) are approximately constant over a relatively wide
frequency range, if Uw is kept constant (ten Kate, 1969) (see also Fig. 4). It follows
that

xm^ - C{MIW) U<o = - Apr! £fo/(M)- (J9)

This equation (19) is of the same form as (7) and (13). Multiplication of (7), (13)
and (19) by the factor (7r|)/Oa yields the endolymph displacement z in the ampulla:

2 = ApnrtyJiw^Oa), (20)

where y0 is one of the terms y, UCJ or at.
It seems possible now to investigate the actual deformation of the cupula using

equation (20). In actual fact the minimum values of individual thresholds to the
applied angular velocities yv, measured in pike of different sizes, are observed to be
the same (see Fig. 2B). Therefore a mechanical sensitivity G of the semicircular
canal may be defined as

G = (Ap7rr})l(4VIi0a). (21)
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This equation (21) will possibly reflect the real deformation of the cupula if a
dimensional study of semicircular canals of different sizes within a single species,
which grows considerably, is undertaken, assuming that the properties of the central
nervous system do not change during growth.

RESULTS AND THEORETICAL CONSEQUENCES

The allometric relations cF1 between the dimensions of the horizontal semicircular
canal {A, r^ lx and Oa) and the body length L for 55 pike of different sizes have been
determined (ten Kate, 1970). All values of c and n are computed from 55 measured
values of each of the parameters A, 2re, lly O^ he and (/i + As) by the least squares
method.

The values of c and n of the parameters are listed in columns III and IV with the
corresponding standard errors (see Table 1). In column V and VI the measurement
errors Me are compared to the standard errors of estimate E8. It is concluded that
variance in the values for the parameters of semicircular canals for one particular body-
length L is paramount to measurements errors. The linearity of the regression curve
log c + n log L was statistically tested (ten Kate, 1970). Moreover p =̂ 1 g/cm8 and
n = 1-25 cP at 20 °C (ten Kate, 1970) have been measured.

Substituting all data in (21) yields

G = (4-44 ± 0-95) x io-4Z.(°-M ± ow cm sec. (22)

With the aid of the allometric relation between hc and L we obtain:

G\h\ = (i-6± 0-4) x io-2!/-*02±°<*> cm-1 sec. (23)

This quotient is nearly independent of the body length L. Individual values of
G/hl are also computed from the values of A, I, rc and Oa for the horizontal canal
(see Fig. 2A). Comparing these individual values of G\h\ to the threshold values
yt (step-velocity inputs) in Fig. 2B yields a corresponding relationship to L. The
spreads of G/h* and yt are, however, of different magnitudes. For this and explanation
can be sought in some stochastic process(es) in the neuronal tracts of the vestibulo-
ocular reflex. G/Af appears to be practically independent of L. Therefore, G/h% may
represent the actual sensitivity of the semicircular canal to angular velocity.

On this basis the two main concepts about the cupula deformation, mentioned
in the literature, seem to be incorrect (Egmond, 1952; Groen, 1952; Jones, 1963;
Kuiper, 1956). The cupula is neither turning like a door nor is it simply gliding
over the crista. Three other possibilities can be visualized.

(a) The cupula bends as an elastic rod (elastic view) (see also Dijkgraaf, 1963).
(A) The cupula is deformed at its centre (cf. the book of Dittrich, 1963, and a

report of Grohmann, 1971), (hydrodynamic view).
(c) The cupula top and a more dense subcupular layer are linearly sheared at the

same time. Then the thickness of the layer depends on the supposed increasing
length of the sensory hairs during growth of the animal (ten Kate, 1970; Dohlman,
1964). In this paper we will work out only hypotheses (a) and (c) in somewhat more
detail.

Hypothesis (a). Theoretically it appears possible to explain the equation (23) by
a cupula that bends in a circular way (Fig. 3 A). Then the ampulla is approximated
by an ellipsoid and the neutral surface of the deformed cupula is depicted as the
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Table 1.

I
Parameter

Ak

2r

k
o.
he

II
Canal

h.s.c.
h.s.c.
h.s.c.
hjj.c.
h.s.c.
h.s.c.

Ill
c

0-0704 ± 0-0037 mm*
O-122 ± O-OO3 mm

o-0474±o-ooi3 cm
0-0286 ± 0-0014 mm*

0-165 ±0-003 i ™
0-1031 ±0-0028 cm

IV
n

i'73O±o-oi6
o-274± 0-007
O-945 ±0-008
0-943 ±0-015
0477 ±0-005
0-865 ±0008

V
M,(%)

4
1-28
1-5

375
1-5-0-3

1

VI

n - 3
4 6
5-6

1 4 2

3 7
5-6

surface of a cylinder (compare Fig. 3 A and Fig. 3 B). The radius of the cylinder
corresponds to the radius of curvature i?,.. The volume between the neutral plane of
the cupula in the equilibrium position and the cylindrical surface in the ellipsoid is
calculated with the aid of elliptic integrals. The average displacement is then
theoretically

z = h*J(SRc). (24)

This equation (24) is an attractive explanation of (23). Combining (23) and (24)

yields
Rc = (7-8 ± i .yJy- iL^iooo cm. (25)

Substituting the minimum threshold angular velocity y = 2°/sec for pike of different
sizes

R,. = (220 ± 48) H0"02 ± » « cm. (26)

On account of this large value it is no miracle that the small bending of the artificially
evoked cupular motion is not taken as essential (Steinhausen, 1931; Dohlman, 1935;
Vilstrup, 1950). During experiments with indian-ink injections, however, relatively
large forces are applied, causing an inelastic deformation at the cupula basis, i.e.
a sliding motion. Since the radii of curvature for L = 5 cm and 100 cm are large
(see (26)) only small threshold values are found for the deviation of the sensory hair
tops, namely of the order of those in the human cochlea. For sensory hairs of 5 /im
long these deviations lie between 0-06 and 1 A. This is a consequence of the fact
that either the cupula is simply bending, or undergoes a combination of bending
and a negligible gliding over the crista.

In any case, for this model, the displacement of the sensory hair at its base or at
its top seems to be of an incredible small order of magnitude. Large effects caused
by gliding of a whole cupula over the crista is more easily acceptable as a means of
efficient stimulation. However, no experimental evidence is available as yet for the
absence of a neuronal coincidence circuit in the vestibular tracts. Therefore the large
number of ampullar nerve fibres (von B6k6sy, 1955) might be explained as necessary
for the lowering of the threshold perception.

Fig. 3. (A) The upper figure is the cross-section of the ampulla. The middle figure is the
ampulla with the cupula in rest position. The lower figure is the cupula during endolymph
displacement. A, Top of the ampulla; B, summit of the deviated cupula; bu half-width of the
cupula; D, canal duct; h^, cupula height; O, summit of the crista; R^, radius of curvature.

(B) Theoretical stereometric figure used for the derivation of * a /£ (gee text). An ellipsoid
is intersected by a cylinder. ABDCE is the intersection of the ellipsoid in the XOZ plane.
The ellipsoid ia an approximation of the ampulla. OBF is the cylindrical surface between the
XOZ plane and the surface of the ellipsoid. 6X = 6/2. The line in point M perpendicular to the
XOZ plane is the axis of a cylinder with radius P.
23 I I B 58
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Fig. 4. The effect of growth on the relation between the period T and the phase differences
between the maximum cupula deflexion and the maximum angular velocity in the case of low
cupular stiffness. Curves are calculated for pike of 5, io, 20, 30, 60 and 100 cm body length.

Another consequence is that the restoring pressure per cm displacement F in the
narrow duct can also be expressed in the dimensions of the semicircular canal and
in the physical constants of the corresponding cupula.

For this purpose the cupula is idealized as an elastic bar with elliptical cross-section
along the axis. In this way the following relation is obtained

F = nbh* EOe(4&Oa)-\ (27)

where b and k are respectively the major and minor axes of the perpendicular elliptic
cross-section of the cupula. The Young's modulus of elasticity E can be estimated
by substituting values for F and the corresponding dimensions. The values for F are
deduced either indirectly from the slow return of the pike's eye or directly calculated
from the cupula deflexion in the pike's semicircular canal (Steinhausen, 1931;
de Vries, 1956). From substitutions in (27) we obtain E = 0-35 x io3 dyne/cm2 and
1-85 x 10s dyne/cm2 respectively; these values are near to the lower limit of the
Young's modulus for known gelatins.

The value for the Young's modulus of elasticity for the cupulae on the skin of the
mud-puppy is found to be of the same order of magnitude, by measurement of the
deflexions with calibrated glass fibres (C. M. Oman, personal communication).
Furthermore, the value for cupulae in the human semicircular canals are calculated
to be 2-8 x io8 dyne/cm2 (Oman & Young, 1971).

The system constants of the differential equation (1) can be expressed in terms of
the body length L:

(27) -• F = 224L-*91 dyne/cm3, (28)

(2) -> M = O-IO3L0"87 g/cm, (29)

(3) -»• W = 1-25 x io2L(M0 dyne sec/cm3. (30)

Substitution of these values in the phase and amplitude relations will elucidate the
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Fig. 5. Normalized deviations *• of the cupulae plotted against the frequency v in cyc/sec for
constant maximum angular velocity for pike of different sizes in the case of low cupular stiffness.

effect of growth on the pike's semicircular canal. With xjr = (77/2 —Q) and o) = zn\T
equation (16) is rewritten:

tan f = FT{Wzn)-1-znM{TW)-\ (31)

The phase diagrams in Fig. 4 are obtained with (28), (29), (30) and (31). The phase
differences \jr between the cupula deviation and the maximum angular velocity shift
towards the large periods T for increasing body length L.

The effect of growth on the amplitude characteristics can be obtained by the
substitution of (28), (29), (30) in (17). Since an equal bending of cupulae of different
sizes is necessary for equal stimulation of the sense epithelia, the amplitude diagrams
are normalized to the top deviations of the smallest one (L = 5 cm), z* means the
deviation of the cupula at the same height he as the smallest cupula height hc. These
deviations z* are plotted against v for pike of different sizes in Fig. 5 for the constant
angular velocity of 1 radian/sec. It should be noticed that the frequency range for
equal amplitudes increases for pike of larger sizes. This signifies that larger pike are
capable of detecting angular velocities at lower frequencies than small pike.

The ratio z*/^, an amplification factor, is also plotted in log decibel units against
the frequency o) (see Fig. 6). In a relatively wide frequency range the amplification
factor z*!^ for pike of different sizes is approximately constant.

These calculated diagrams of the cupula deviation can be compared to the
dynamical characteristics of the vestibulo-ocular reflex (see below). In several pike
we have already observed shifting of phases to larger periods T and shifting of
amplitude characteristics as predicted by the theory (ten Kate, 1969).

Returning to hypothesis c the following problem arises: Is it also possible to
develop such a model based on hypothesis (c)? To do this it has to be proved that
the average endolymph displacement is proportional to h%.

Hypothesis (c). It seems very likely that the kinocilia cause the excitation of the cell.
The stereocilia are much shorter and may serve another purpose. These sensory
hairs are embedded in the so-called subcupular layer. In microscopical studies

33-2
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of different sizes in the case of low cupular stiffness.

(Dohlman, 1964) the subcupular layer seems to be more rigid than the cupula. The
stereocilia also contribute to its stiffness. Therefore the subcupular layer is supposed
to possess a thickness equal to the length of the stereocilia. When the stereocilia
elongate during the pike's growth the subcupular layer may also increase in thickness.
Indeed some evidence is available for the growth of the sense cell (Proebsting, 1924).
The growth rate of the sense cells is in accordance with that of the cupula height hc.
It is very likely that the thickness of the subcupular layer increases proportionally
to hc. The shearing of the cupula mass will occur just at the boundary between
the subcupular layer and the cupula. The visco-elastic material of the cupula will
shear off or flow at this boundary.

By its length, which is great with respect to the stereocilia, the kinocilium is very
well coupled in the cupula. The displacement of the cupula with respect to the sub-
cupular layer deflects the kinocilium over a certain angle. For threshold excitation
of the sense cell a minimum angle of the kinocilium is necessary. This angle is
constant during growth. When the subcupular layer becomes thicker during growth
the displacement at the boundary for obtaining the minimum angle of deviation
increases proportionally. Hence this displacement is proportional to hc during
growth.

Suppose, however, that the cupula glides over the subcupular layer and turns
like a door in the ampulla. Then, to obtain the same angle of cupula deflexion in the
case of a large cupula, more fluid has to be displaced than in the case of a small
cupula. The average endolymph displacement is then proportional to h0. However,
at threshold the deflexion of the cupula has to increase with h^ because at threshold
the minimum deviation of the kinocilium increases proportionally to hc. Hence,
during growth the average displacement of the endolymph (in the ampulla) necessary
for threshold responses has to be proportional to h\.

The properties of the cupula substance, in particular at the location of the kino-
cilium, are important for this latter model. When the cupula substance is a visco-
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elastic material, the shearing at the boundary is determined by the time course of
the acceleration pressure.

The problem then arises: is the decrease of F with L specific for hypothesis (a) ?
(see formula (28)). According to hypothesis (c) the cupula only glides over the sub-
cupular layer. If the cupula is deflected through an angle /? it will shear over the
the subcupular layer. This will counteract the force acting on the cupula. Therefore
the restoring force per unit of angle is proportional to the surface of the crista O^.
under the cupula. The pressure /i per unit of angle of cupular deflexion should remain
constant during growth since O^/Oa does not depend on L (equal growth rates).
In the case where the cupula is deflected over an angle /? (in radians) the displaced
volume of endolymph is ^fihc 0o(37r)~1. (The ampulla is approximated by an
ellipsoid.) (The calculation is made by multiplying the volume of the ellipsoid by
/?/27T, which yields \hebfi. In the latter form Oa = nJ2heb is substituted.)

The average displacement z = ^./Sh^n)-1. Hence the average pressure/cm Fa in
the ampulla is proportional to p 37r(4/»0/?)~1. For the pike, the restoring pressure F
per cm displacement in the narrow duct is

F oc ?,nOeM{4hcOJ)-i oc L-*"> (32)

The exponent of the relation between F and L in (32) is only slightly different from
that of the relation between F and L in (28). Therefore no conclusion can be drawn
from the shift of the resonance frequencies and the change of phase and amplitude
characteristics during growth about the correctness of either hypothesis (a) or hypo-
thesis (c).

THE EFFECT OF GROWTH ON THE VESTIBULO-OCULAR
REFLEX AND DISCUSSION

On being turned around the vertical axis vertebrates react by turning their eyes
in the opposite direction. This phenomenon is called the horizontal vestibulo-ocular
reflex because the horizontal semicircular canal is the sense organ which detects the
angular acceleration. The three main subdivisions of this reflex arc are: the semi-
circular canal, the brain and the eye system. In fact the whole arc can be considered
as a set of filters, an array of seven elements, namely the semicircular canal, the hair
cells, the vestibular nerve fibres, the central nervous system, the motor nerve fibres,
the eye muscles and the eye-ball in its socket.

Now, as a first attempt at verification of the growth effect on the course of phase
and amplitude diagrams of the semicircular canal, the horizontal vestibulo-ocular
reflex arcs of pike of different sizes will be studied. For pikes of one size (20-25 cm
body length) some properties of this reflex arc have already been obtained: (a) the
reflex arc behaves like a linear system; (b) the reflex arc can be described with a set
of filters (ten Kate, 1969). On this basis it seems reasonable to expect some influence
of the change in the filter characteristics of one component, the semicircular canal,
on the overall transfer function. The effect of growth necessarily has to be reflected
in the diagrams of the vestibulo-ocular reflex arc.

The eye responses of pike of different sizes are recorded in the following way.
On the turntable pike from 4 to 87 cm in length are mounted in special Lucite
fish-holders. Small mirrors are attached to the eyes. These mirrors are illuminated



362 J. H. TEN KATE

o-

-20-

- 4 0 '

- 6 0 '

- 8 0 '

- 1 0 0 '

I I i I I i i r i r

7 2 cm
81cm
7-7 an

20-25 cm
33 cm

55-6 cm

. ^ - • - ~ " '

10° 101 10*

7(sec)

Fig. 7. Phase differences i/r0 between the maximum eye deviation and the maximum angular
velocity plotted against the period of oscillation T for pike of different sizes. Solid bars
indicate the spread in measured values.

by a spot of light. The light source, a slit, is focused by a lens and an image of the
slit is obtained on a screen. The horizontal position of this vertical line is then
recorded on a continuously running film in a camera provided with a horizontal slit.
Sinusoidal eye movements and the sinusoidal oscillation of the turntable are recorded
on the same film. (Non-linear phenomena like the quick jerks of nystagmus are absent
for low angular acceleration.)

After the experiment the phase differences between the maximal eye deviation
am and the maximal angular velocity ym are determined. Then for the pike of
different sizes phase and amplitude diagrams are plotted. The phase relation with
the frequency do indeed shift towards the larger periods of T for increasing body
length L (see Fig. 7). This observation agrees with the theoretical predictions. The
numerous measured values of phases in Fig. 7 are omitted in order to prevent con-
fusion ; only average curves are drawn. The spread in the measured values is indicated
by solid bars at the beginning and at the end of the curves.

A phase shift during growth appears to be present. This fact can be seen as a
confirmation of the growing semicircular canal model. However, one may also
interpret this in the model of the vestibulo-ocular reflex arc as due to growth
effects of one or more filters other than the semicircular canal. Data are lacking about
these influences on biological filters like neuronal networks.

It should be noticed that at the moment no evidence is available for such a dynamical
change of these filters. No methods are possible to separate these different growth
effects. Some reasoning, however, may indicate the correct solution of this growth
problem. The uncertainty in the exact value for the modulus of elasticity of the
cupular substance is a chief obstacle to the drawing of definite conclusions. For that
reason an attempt was made to explain Fig. 7 with the use of the upper limit
(1-85 x io8 dyne/cm2) for this modulus. In that case a constant phase delay of 55—650

for all frequencies is obtained for all periods of T. Such a constant phase difference is
incompatible with the model of the vestibulo-ocular reflex (since no dynamics of the
eye system seem to be present). If, on the other hand, the small value of 0-35 x 10s
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Fig. 8. Log-decibel plots for the amplification OyJUio1 against the frequency
in radians per sec for pike of different sizes.

dyne/cm2 is chosen (formula 18), growth effects on other filter characteristics need
to be present. The only justifiable conclusion is that the phase diagrams of the
reflex arc are not in conflict with the predicted diagrams of the semicircular canals.

Additionally, the amplification factors a^Ua)2 are plotted against the frequency w
(see Fig. 8) (<*„, = maximal eye deviation and U = amplitude of the turntable
movement.) For convenience the various measured values of am/Ua)2 are omitted.
Also in this figure the spread of the measured values is indicated by the solid bars
located at the beginning and the end of the curve of L = 55-6 cm. These amplification
factors under study do not differ much in the range of 2 radians/sec < 0) < 7 radians/
sec. For these frequencies the amplification factors do not spread more than for
pike of one particular size (20-25 cm). Apparently this result implies that during
the pike's whole life the vestibulo-ocular reflex arc has the same degree of compen-
sation in the high-frequency range.

Comparison of Figs. 8 and 6 reveals that the region of equal amplification in Fig. 8
is smaller than in Fig. 6. This fact suggests a greater cupular stiffness, or a larger
value for the modulus of elasticity than that of formula (18).

Another conspicuous fact is the difference in the slopes of the curves in Figs. 8
and 6. The last figure has a maximal value of — 6 dB per octave at the higher
frequencies. In Fig. 8 several curves have slopes with values between —9-5 and
— 10-3 dB per octave in the high-frequency range.

The difference in slopes between the calculated and experimental curves shows
the effect of growth on both filters (the brain and the eye system). From these values
one may only conclude that this reflex arc is a complicated system, because the slope
is not a simple multiple of — 6 dB per octave; on the other hand, differences between
the slopes at the high-frequency side are small for pike of different sizes.

Another evidence for linearity of the whole reflex arc is obtained in the comparison
of Figs. 8 and 7. As the slope of the curves in Fig. 8 is about 10 dB per octave, the
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phase lag of the eye response with respect to the angular acceleration is approximately
£4rX 1800 = 150°. This corresponds to the actual value of "̂0 at T = 1 sec, since ijr0

is defined as the phase difference between the eye amplitude and the maximum
angular velocity. For comparison of these diagrams the standard approximation with
asymptotes is not useful, since the low-frequency ends of the curves are determined
by the thresholds of the vestibulo-ocular reflex. In other words, the plotted ampli-
fication factors am/C/«2 are too small in the low-frequency region. This is easily
understood from the fact that the relation between am and U is linear above threshold
at one particular frequency. But at threshold, 0^ = 0 with U 4= o.

It seems reasonable to conclude on the basis of the growth effects on the phase
and amplitude diagrams of the horizontal vestibulo-ocular reflex of the growing
pike that the proposed mechanical model (hypothesis (a)) of the growing semicircular
canal is possible. For further study on the growing horizontal semicircular canal this
model seems to be a useful working hypothesis.

SUMMARY

1. The motion of the endolymph in the semicircular canal is described with the
aid of a linear second-order system, comprising the applied angular acceleration and
the linear displacement, the linear velocity and the linear acceleration of the endolymph.

2. A sensitivity factor G for angular velocity is derived and expressed in the
dimensions of the semicircular canal.

3. The sensitivity factor G of the semicircular canal proves to be consistent with
the equivalent sensitivity factor of a more sophisticated hydrodynamic model of
these canals.

4. The sensitivity of the growing semicircular canal is defined to be Gjh% inde-
pendent of the pike's size. Threshold angular velocities for the vestibulo-ocular
reflex of 27 pike between 4 and 50 cm bodylength are in agreement with this
assumption.

5. At threshold stimulation with an angular velocity of 2°/sec the radius of
curvature Rc of the cupula is calculated to be 220 ± 48 cm.

6. At the threshold angular velocity 7 = 2°/sec the deviation of sensory hairs
5 fim long is assessed to be between 0-06 A and 1 A.

7. Young's modulus of elasticity for the cupular substance is found to be between
0-35 x io3 dyne/cm* and 1-85 x io8 dyne/cm2 (on the basis of a circular bending for
the cupula).

8. Characteristics of the model of the growing semicircular canal are calculated
for pike with body length between 5 and 100 cm.

9. Observed growth effects of the pike's vestibulo-ocular reflex arc are correlated
to the growth effects calculated on basis of the model for the growing semicircular
canal.

10. The pike possesses the same degree of vestibulo-ocular compensation in the
high-frequency range (2 radians/sec < o» < 7 radians/sec) of angular oscillations
during its whole life (11 observations of pike of body length 4-56 cm).

Thanks are due to Mrs J. T. Leutscher-Haselhoff and to Prof. dr. J. W. Kuiper
for their comments on the manuscript.



The mechanics of the growing semicircular canal 365

LIST OF ABBREVIATIONS

a Angular acceleration.
am{ = — CAd*) Maximum angular acceleration during sinusoidal oscillation.
b Width of the ampulla cross-section at the summit of the crista.
c Coefficient of allometric relation.
h,, Cupula height.
k Thickness of the cupula at the summit of the crista.
/j Length of the narrow duct.
/« Length of the wide part of the semicircular canal.
n Exponent of allometric relation.
rc Radius of the inner cross-section of the narrow duct.
t Time.
x Average endolymph displacement in the narrow duct.
xm Average maximum displacement during sinusoidal oscillation.
Xo Average m i n i m u m displacement caused by post-rotatory st imulation.
* Average linear velocity of the endolymph in the duc t (cm/sec).
X Average linear acceleration of the endolymph in the duct .
z Average endolymph displacement in the ampulla .
z Endo lymph displacement in the ampulla .
2 * Normalized deviations of cupulae with respect to the cupula of a pike with body

length L = 5 cm.
A Area enclosed by the average semicircular canal.
C = zAik + Q-K
E Young's modulus of elasticity.
JF Restoring pressure per cm in the duct (dyne/cm).
G Sensitivity factor of the semicircular canal.
L Body length of the pike.
M Inertial pressure coefficient of the endolymph (g/cm).
Oo, O0 Areas of the cross-sections of the ampulla and of the duct respectively.
Oao Surface of the crista.
Q Phase difference between a^, and x^.
R Radius of a circular area, equal to the area enclosed by the average canal.
R, Radius of curvature of the deflected cupula.
T Period of the sinusoidal oscillation.
U Amplitude of the applied angular oscillation.
W Coefficient for the Poisseuille friction in the duct (dyne sec/cm).
0^ Eye amplitude of the sinusoidal eye response.
P Angle of linear cupula deflexion (like a door).
y Applied constant angular velocity.
y, Threshold angular velocity for the transient eye response.
yn Maximum angular velocity during sinusoidal angular oscillation.
17 Absolute viscosity of the endolymph.
fi Pressure per unit of angular deflexion.
v Frequency of sinusoidal angular oscillation.
p Specific density of the endolymph.
<f> The angle of the endolymph deviation in the torsion pendulum.
xjr P h a s e difference be tween xm a n d y m .
ijro Phase difference between a,, and yra.
to = zvv
6 The moment of Poisseuille friction in the torsion pendulum model.
•n The moment of inertia in the torsion pendulum model.
A Restoring moment, with respect to the centre of the semicircular canal, exerted by the

cupula.



366 J. H. TEN KATE

REFERENCES

VON BEKBSY, G. (1955). Subjective cupulometry threshold, adaptation and sensation. Intensity of
the vestibular organs for rotations in the horizontal plane. Archi Otolar. 61, 16.

DOHLMAN, G. F. (1935). Studies in Labyrinthology. PTOC. R. SOC. Med. 38, 1371-80.
DOHLMAN, G. F. (1964). Secretion and absorption of endolymph. Arm. Otol. JRMnol LOT. 73, 708-23.
DITTRICH, F. L. (1963). Biopkysics of the Ear, p. 116. Springfield.
DIJKGRAAF, S. (1963). The functioning and significance of lateral line organs. Biol. Rev. 38, 51-105.
EGMOND, A. A. J. (1952). The Function of the VeitUndar Organ. New York: S. Karger.
FERNANDEZ, C. & VALENTTNUZZI, M. (1968). A study on the biophysical characteristics of the cat.

Acta Oto-Lar. 65, 293-310.
GROEN, J. J., LOWENSTEIN, O. & VENDRDC, A. J. H. (1952). The mechanical analysis of the response

from the endorgans of the horizontal semicircular canal in the isolated elasmobranch labyrinth.
J. Pkysiol., Lond. 117, 320-46.

GROHMANN, R. (1968). FlUssigkeitstrSmungen in einem um seine Flachennormale rotierende Bogen-
gangsmodell. Arch. Klin. exp. Ohren-Nasen u. Kehlkopfheilk. 190, 309.

GROHMANN, R. (1971). Der Drehnystagmus als gesetzmassige Folgeerscheinung der Physikalischen
vorgfinge im Gesunden Menschlichen Gleichgewichtsorgan-Habihtationsschrift. Universitats-Hals-
Nasen-Ohrenklinik, Gottingen.

JONES, G. M. & SPELLS, K. E. (1963). A theoretical and comparative study of the functional dependence
of the semicircular canal upon its physical dimensions. PTOC. SOC. Med. B 157, 403-19.

TEN KATE, J. H. (1969). The oculo-vestibulo reflex of the growing pike. Ph.D. Thesis, University of
Groningen, The Netherlands.

TEN KATE, J. H. (1970). The viscosity of the pike's endolymph. J. exp. Biol. 53, 495-500.
TEN KATE, J. H. et al. (1970). The dimensions and sensitivities of semicircular canals. J. exp. Biol.

53. Soi-14-
KutPER, J. W. (1956). The microphonic effect of the lateral line organ. Ph.D. Thesis, University of

Groningen, The Netherlands.
OMAN, C. M. & YOUNG, L. R. (1971). The physiological range of pressure difference and cupula

deflections in the human semicircular canal: Theoretical considerations. Preprint M.I.T. Cambridge,
Mass. U.S.A.

PROEBSTTNG, G. (1924). Zellenzahl und Zellengrdsse im Labyrinthorgan der Tritionen nebst anderen
damit zusammen-hangenden Fragen. ZoSl. Jb. (Allg. Z06I. xmd Pkysiol. der Tiere) 4a, 425.

STEER, R. W. (1967). The influence of angular and linear acceleration and thermal stimulation on the
human semicircular canal. M.I.T. 67-3, Sc.D. Thesis, M.I.T. Massachusetts.

STEINHAUSEN, W. (193 I ) . Observations on the deflections of the cupula. Z. Halt- Naten- u. Ohrenheilk.
29, 211-216.

VILSTRUP, T. (1950). Studies on the completed structure and mechanism of the cupula. Ann. Otol.
RMnol. Lar. 59, 46—71.

DE VRIES, H. (1956). Physical aspects of the sense organs. Progr. Biopkyt. Biopkys. Chem. 6, 207.


