89 research outputs found
Improvement of surface texture on the hot dip galvanized and galvannealed steel sheets
Customers of hot dip galvanized and/or galvannealed steel sheets for automotive are more and moredemanding on high surface quality, paintability and press-formability. The roll texture for temper-rolling incontinuous galvanizing line should be very precisely treated to give a special roughness, which can betransferred to the Zn-coating surfaces during temper-rolling. Among the various texturing methods, in thepresent study, we adopted a newly developed TCT (TopoCrom Texturing) technology and both roll roughness(high/low Ra) and Cr structures (Open/Closed types) are tested. The products applying TCT had a uniformand dense roughness pattern and surface characteristics is also compared with the conventionally used EDT(electron discharge texturing) treatment. It should be noted that TCT technology on commercial galvannealingcoating surface is firstly used and the best condition was Ra=1.2 ?m with closed type; the roughness valuedecreases about 35% compared to the conventionally used EDT. On the other hand, in hot-dip galvanized steelsheets, the best condition was Ra=3.0 ?m with closed type. The friction coefficient was significantly improvedby the effect of the formation of oil pockets on the hot-dip galvanized steel sheet
High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division
BACKGROUND: Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells. In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was then tracked in three dimensions over time using fluorescence microscopy. RESULTS: We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene loci with a mean measurement error of 63 nm. In general, physical separation was observed to increase with increasing genomic separations. However, the extent to which chromatin is compressed varies for different genomic regions. No correlation was observed between compaction and the distribution of chromatin markers from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation was also observed within cells over time and between cells. Differences in the conformation of individual loci can persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated daughter cell pairs. CONCLUSIONS: The directly observed physical separation of reporter loci in live cells is highly dynamic both over time and from cell to cell. However, consistent differences in separation are observed over some chromosomal regions that do not correlate with factors known to influence chromatin states. We conclude that as yet unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to cell-to-cell transcriptional heterogeneity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0111-y) contains supplementary material, which is available to authorized users
Mesenchymal stem cells: from experiment to clinic
There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients
Irrelevant tactile stimulation biases visual exploration in external coordinates
Ossandón JP, König P, Heed T. Irrelevant tactile stimulation biases visual exploration in external coordinates. Scientific Reports. 2015;5(1): 10664
GAS HYDRATES AND MAGNETISM: COMPARATIVE GEOLOGICAL SETTINGS FOR DIAGENETIC ANALYSIS
Geochemical processes associated with gas hydrate formation lead to the growth of iron
sulphides which have a geophysically-measurable magnetic signature. Detailed magnetic
investigation, complemented by petrological observations, were undertaken on cores from a
permafrost setting, the Mackenzie Delta (Canadian Northwest Territories) Mallik region, and
two marine settings, IODP Expedition 311 cores from the Cascadia margin off Vancouver
Island and the Indian National Gas Hydrate Program Expedition 1 from the Bengal Fan.
Stratigraphic profiles of the fine scale variations in bulk magnetic measurements correspond to
changes in lithology, grain size and pore fluid geochemistry which can be correlated on local to
regional scales. The lowest values of magnetic susceptibility are observed where iron has been
reduced to paramagnetic pyrite, formed in settings with high methane and sulphate or sulphide
flux, such as at methane vents. High magnetic susceptibility values are observed in sediments
which contain detrital magnetite, for example from glacial deposits, which has survived
diagenesis. Other high magnetic susceptibility values are observed in sediments in which the
ferrimagnetic iron-sulphide minerals greigite or smythite have been diagenetically introduced.
These minerals are mostly found outside the sediments which host gas hydrate. The mineral
textures and compositions indicate rapid disequilibrium crystallization. The unique physical
and geochemical properties of the environments where gas hydrates form, including the
availability of methane to fuel microbiological activity and the concentration of pore water
solutes during gas hydrate formation, lead to iron sulphide precipitation from solute-rich brines.
Magnetic surveying techniques help delineate anomalies related to gas hydrate deposits and the
diagenesis of magnetic iron minerals related to their formation. Detailed core logging
measurements and laboratory analyses of magnetic properties provide direct ties to original
lithology, petrophysical properties and diagenesis caused by gas hydrate formation.Non UBCUnreviewe
- …