3,447 research outputs found

    Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil

    Modeling Magnetite Reflectance Spectra Using Hapke Theory and Existing Optical Constants

    Get PDF
    Magnetite is an accessory mineral found in terrestrial environments, some meteorites, and the lunar surface. The reflectance of magnetite powers is relatively low [1], and this property makes it an analog for other dark Fe- or Ti-bearing components, particularly ilmenite on the lunar surface. The real and imaginary indices of refraction (optical constants) for magnetite are available in the literature [2-3], and online [4]. Here we use these values to calculate the reflectance of particulates and compare these model spectra to reflectance measurements of magnetite available on-line [5]

    Squeezed gluon vacuum and the global colour model of QCD

    Get PDF
    We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global colour model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.Comment: 13 pages, LaTe

    Timelike self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for timelike self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively using the theory of dynamical systems.Comment: 23 pages, 6 eps-figure

    Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors

    Full text link
    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility (100cm2/Vs\sim 100 cm^2/Vs). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let

    Vacuum Condensates in the Global Color Symmetry Model

    Full text link
    Based on the quark propagator in the instanton dilute liquid approximation, we calculate analytically the quark condensate , the mixed quark gluon condensate $g_{s}$ and the four quark condensate at the mean field level in the framework of global color symmetry model. The numerical calculation shows that the values of these condensates are compatible with the ranges determined by other nonperturbative approaches. Moreover, we find that for nonlocal four quark condensate the previous vacuum saturation assumption is not a good approximation even at the mean field level.Comment: 8 latex pages, no figure, Submitted to Phys. Rev.

    Mesons as qbar-q Bound States from Euclidean 2-Point Correlators in the Bethe-Salpeter Approach

    Full text link
    We investigate the 2-point correlation function for the vector current. The gluons provide dressings for both the quark self energy as well as the vector vertex function, which are described consistently by the rainbow Dyson-Schwinger equation and the inhomogeneous ladder Bethe-Salpeter equation. The form of the gluon propagator at low momenta is modeled by a 2-parameter ansatz fitting the weak pion decay constant. The quarks are confined in the sense that the quark propagator does not have a pole at timelike momenta. We determine the ground state mass in the vector channel from the Euclidean time Fourier transform of the correlator, which has an exponential falloff at large times. The ground state mass lies around 590 MeV and is almost independent of the model form for the gluon propagator. This method allows us to stay in Euclidean space and to avoid analytic continuation of the quark or gluon propagators into the timelike region.Comment: 21 pages (REVTEX), 8 Postscript figure

    pi-pi scattering in a QCD based model field theory

    Full text link
    A model field theory, in which the interaction between quarks is mediated by dressed vector boson exchange, is used to analyse the pionic sector of QCD. It is shown that this model, which incorporates dynamical chiral symmetry breaking, asymptotic freedom and quark confinement, allows one to calculate fπf_\pi, mπm_\pi, rπr_\pi and the partial wave amplitudes in π\pi-π\pi scattering and obtain good agreement with the experimental data, with the latter being well described up to energies \mbox{E700E\simeq 700 MeV}.Comment: 23 Pages, 4 figures in PostScript format, PHY-7512-TH-93, REVTEX Available via anonymous ftp in /pub: login anonymou get pipi93.tex Fig1.ps Fig2.ps Fig3.ps Fig4.p

    Defining plant resistance against Phytophthora Cinnamomi and application of resistance to revegetation

    Full text link
    Phytophthora cinnamomi is a soil borne plant pathogen that causes devastating disease in many Australian ecosystems and threatens the survival of native flora. Compared with the number of plant species that are susceptible to P. cinnamomi, only a few species are known to be resistant and control of this pathogen by chemicals is difficult and undesirable in natural systems. The major aim of our research is therefore to characterise natural resistance and determine which signalling pathways and defence responses are involved. Our examination of resistance is being approached at several levels, one of which is through the use of the model plant, Arabidopsis. Previously, Arabidopsis had been shown to display ecotypic variation in responses to P. cinnamomi and we are exploring this further in conjunction with the analysis of a bank of Arabidopsis defence pathway mutants for their responses to the pathogen. These experiments will provide a fundamental basis for further analysis of the defence responses of native plants. Native species (susceptible and resistant) are being assessed for their responses to P. cinnamomi at morphological, biochemical and molecular levels. This research also involves field-based studies of plants under challenge at various sites throughout Victoria, Australia. The focus of this field-based research is to assess the responses of individual species to P. cinnamomi in the natural environment with the goal of identifying individuals within susceptible species that display \u27resistance\u27. Understanding how plants are able to resist this pathogen will enable strategies to be developed to enhance species survival and to restore structure and biodiversity to the ecosystems under threat.<br /

    Calculation of the Chiral Lagrangian Coefficients

    Get PDF
    We present a systematic way to combine the global color model and the instanton liquid model to calculate the chiral Lagrangian coefficients. Our numerical results are in agreement well with the experimental values.Comment: 7 pages, To appear in Chin.Phys.Lett, Year 200
    corecore