63 research outputs found

    Liver segmental volume and attenuation ratio (LSVAR) on portal venous CT scans improves the detection of clinically significant liver fibrosis compared to liver segmental volume ratio (LSVR).

    Get PDF
    BACKGROUND The aim of this proof-of-concept study was to show that the liver segmental volume and attenuation ratio (LSVAR) improves the detection of significant liver fibrosis on portal venous CT scans by adding the liver vein to cava attenuation (LVCA) to the liver segmental volume ratio (LSVR). MATERIAL AND METHODS Patients who underwent portal venous phase abdominal CT scans and MR elastography (reference standard) within 3 months between 02/2016 and 05/2017 were included. The LSVAR was calculated on portal venous CT scans as LSVR*LVCA, while the LSVR represented the volume ratio between Couinaud segments I-III and IV-VIII, and the LVCA represented the density of the liver veins compared to the density in the vena cava. The LSVAR and LSVR were compared between patients with and without significantly elevated liver stiffness (based on a cutoff value of 3.5 kPa) using the Mann-Whitney U test and ROC curve analysis. RESULTS The LSVR and LSVAR allowed significant differentiation between patients with (n = 19) and without (n = 122) significantly elevated liver stiffness (p < 0.001). However, the LSVAR showed a higher area under the curve (AUC = 0.96) than the LSVR (AUC = 0.74). The optimal cutoff value was 0.34 for the LSVR, which detected clinically increased liver stiffness with a sensitivity of 53% and a specificity of 88%. With a cutoff value of 0.67 for the LSVAR, the sensitivity increased to 95% while maintaining a specificity of 89%. CONCLUSION The LSVAR improves the detection of significant liver fibrosis on portal venous CT scans compared to the LSVR

    MR-FLIP: A new method that combines FLIP with anatomical information for the spatial compliance assessment of the anal sphincter muscles.

    Get PDF
    INTRODUCTION Continence results from a complex interplay between anal canal (AC) muscles and sensory-motor feedback mechanisms. The AC's passive ability to withstand opening pressure - its compliance - has recently been shown to correlate with continence. Functional lumen imaging probe (FLIP) is used to assess AC compliance, although it provides no anatomical information. Therefore, compliance assessment of specific anatomical structures has not been possible, and the anatomical position of critical functional zones remains unknown. In addition, FLIP assumes a circular orifice cross-section, which has not been shown for the AC. To address those shortcomings, a technique combining FLIP with a medical imaging modality is needed. METHOD We implemented a new research method (MR-FLIP) that combines FLIP with MR-imaging. Twenty healthy volunteers underwent MR-FLIP and conventional FLIP assessment. MR-FLIP was validated by comparison with FLIP results. Anatomical markers were identified, and the cross-sectional shape of the orifice was investigated. RESULTS MR-FLIP provides compliance measurements identical to those obtained by conventional FLIP. Anatomical analysis revealed that the least compliant AC zone was located at the proximal end of the external anal sphincter. The AC cross-sectional shape was found to deviate only slightly from circularity in healthy volunteers. CONCLUSION The proposed method was equivalent to classical FLIP. It establishes for the first time a direct mapping between local tissue compliance and anatomical structure, which is key for gaining novel insights into (in)continence. In addition, MR-FLIP provides a tool for better understanding conventional FLIP measurements in the AC by quantifying its limitations and assumptions. This article is protected by copyright. All rights reserved

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    [Indications for contrast media.]

    Get PDF

    Gadolinium-Based Contrast Agents and Free Gadolinium Inhibit Differentiation and Activity of Bone Cell Lineages.

    Get PDF
    OBJECTIVES Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd3+ (12.5-100 μM) and GBCA (100-2000 μM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS Gd3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 μM Gd3+ on days 4-6 of culture as compared with unexposed controls (P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 μM on day 5 (P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 μM on day 5 (P < 0.001). In cultures of OPC, cell viability was not affected by Gd3+, whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 μM Gd3+ on days 4-6 (P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 μM on day 5 of culture (P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA (P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt (P < 0.001). CONCLUSIONS Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism

    Diagnostic accuracy of magnetic resonance imaging: a prospective evaluation of patients with suspected appendicitis (diamond)

    No full text
    To show the effect of standard magnetic resonance imaging (MRI) in patients with suspected appendicitis on negative laparotomy and perforation rate. Moreover, the economic impact on hospital resources was evaluated

    Obesity lowers the threshold of allergic sensitization and augments airway eosinophilia in a mouse model of asthma

    No full text
    Clinical and epidemiological studies show a close association between obesity and the risk of asthma development. The underlying cause-effect relationship between metabolism, innate and adaptive immunity, and inflammation remains to be elucidated

    Crohn's disease Activity: Abdominal Computed Tomography Histopathology Correlation

    No full text
    Purpose: Crohn's disease is a type of inflammatory bowel disease affecting estimated 4 million people worldwide. Therapy stratification of Crohn's disease (CD) is mainly based on the inflammatory activity being assessed by endoscopic biopsy and clinical criteria. Cross-sectional imaging allows for the assessment of structural characteristics of the entire gastrointestinal tract including small bowel loops and may provide potential non-invasive image-based biomarkers for the inflammatory activity of CD. The aim of this study was to explore the predictive value of Computed Tomography-based morphologic patterns for inflammatory activity in CD
    • …
    corecore