10,005 research outputs found

    Canonical General Relativity on a Null Surface with Coordinate and Gauge Fixing

    Get PDF
    We use the canonical formalism developed together with David Robinson to st= udy the Einstein equations on a null surface. Coordinate and gauge conditions = are introduced to fix the triad and the coordinates on the null surface. Toget= her with the previously found constraints, these form a sufficient number of second class constraints so that the phase space is reduced to one pair of canonically conjugate variables: \Ac_2\and\Sc^2. The formalism is related to both the Bondi-Sachs and the Newman-Penrose methods of studying the gravitational field at null infinity. Asymptotic solutions in the vicinity of null infinity which exclude logarithmic behavior require the connection to fall off like 1/r31/r^3 after the Minkowski limit. This, of course, gives the previous results of Bondi-Sachs and Newman-Penrose. Introducing terms which fall off more slowly leads to logarithmic behavior which leaves null infinity intact, allows for meaningful gravitational radiation, but the peeling theorem does not extend to Ψ1\Psi_1 in the terminology of Newman-Penrose. The conclusions are in agreement with those of Chrusciel, MacCallum, and Singleton. This work was begun as a preliminary study of a reduced phase space for quantization of general relativity.Comment: magnification set; pagination improved; 20 pages, plain te

    The Removal of Artificially Generated Polarization in SHARP Maps

    Get PDF
    We characterize the problem of artificial polarization for the Submillimeter High Angular Resolution Polarimeter (SHARP) through the use of simulated data and observations made at the Caltech Submillimeter Observatory (CSO). These erroneous, artificial polarization signals are introduced into the data through misalignments in the bolometer sub-arrays plus pointing drifts present during the data-taking procedure. An algorithm is outlined here to address this problem and correct for it, provided that one can measure the degree of the sub-array misalignments and telescope pointing drifts. Tests involving simulated sources of Gaussian intensity profile indicate that the level of introduced artificial polarization is highly dependent upon the angular size of the source. Despite this, the correction algorithm is effective at removing up to 60% of the artificial polarization during these tests. The analysis of Jupiter data taken in January 2006 and February 2007 indicates a mean polarization of 1.44%+/-0.04% and 0.95%+/-0.09%, respectively. The application of the correction algorithm yields mean reductions in the polarization of approximately 0.15% and 0.03% for the 2006 and 2007 data sets, respectively.Comment: 19 pages, 7 figure

    Suspensions of supracolloidal magnetic polymers: self-assembly properties from computer simulations

    Full text link
    We study self-assembly in suspensions of supracolloidal polymer-like structures made of crosslinked magnetic particles. Inspired by self-assembly motifs observed for dipolar hard spheres, we focus on four different topologies of the polymer-like structures: linear chains, rings, Y-shaped and X-shaped polymers. We show how the presence of the crosslinkers, the number of beads in the polymer and the magnetic interparticle interaction affect the structure of the suspension. It turns out that for the same set of parameters, the rings are the least active in assembling larger structures, whereas the system of Y- and especially X-like magnetic polymers tend to form very large loose aggregates

    Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2

    Full text link
    We report new 350 micron polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 YSOs L1527, IC348-SMM2 and B335. We have inferred magnetic field directions from these observations, and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star-formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.Comment: Accepted for publication in The Astrophysical Journa

    Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

    Get PDF
    Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure

    Inducible expression of a cloned heat shock fusion gene in sea urchin embryos.

    Full text link
    corecore