1,187 research outputs found

    Social isolation predicts frequent attendance in primary care

    Get PDF
    Background. Frequent attenders in primary care have complex physical and mental healthcare needs as well as low satisfaction with their healthcare. Interventions targeting mental health or psychoeducation have not been effective in reducing attendance. Here, we test the proposition that both frequent attendance and poor health are partly explained by unmet social needs (i.e., limited social group support networks). Methods. Study 1 (N=1752) was a large cross-sectional community sample of primary care attenders in Scotland. Study 2 (N = 79) was a longitudinal study of a group of young people undergoing a life transition (moving countries and commencing university) that increased their risk of frequent attendance. Study 3 (N=46) was a pre-post intervention study examining whether disadvantaged adults who joined a social group subsequently had reduced frequency of primary care attendance. Results. All three studies found that low social group connectedness was associated with a higher frequency of primary care attendance. This was not attributable to poorer health among those who were socially isolated. In Study 3, joining a social group led to reduced primary care attendance to the extent that participants experienced a (subjective) increase in their social group connectedness. Conclusions. Unmet social needs among frequent attenders warrant closer consideration. Interventions that target social group connectedness show promise for reducing overutilization of primary care services

    Distributed Response Time Analysis of GSPN Models with MapReduce

    Get PDF
    widely used in the performance analysis of computer and communications systems. Response time densities and quantiles are often key outputs of such analysis. These can be extracted from a GSPN’s underlying semi-Markov process using a method based on numerical Laplace transform inversion. This method typically requires the solution of thousands of systems of complex linear equations, each of rank n, where n is the number of states in the model. For large models substantial processing power is needed and the computation must therefore be distributed. This paper describes the implementation of a Response Time Analysis module for the Platform Independent Petri net Editor (PIPE2) which interfaces with Hadoop, an open source implementation of Google’s MapReduce distributed programming environment, to provide distributed calculation of response time densities in GSPN models. The software is validated with analytically calculated results as well as simulated ones for larger models. Excellent scalability is shown. I

    Combining high conductivity with complete optical transparency: A band-structure approach

    Get PDF
    A comparison of the structural, optical and electronic properties of the recently discovered transparent conducting oxide (TCO), nanoporous Ca12Al14O33, with those of the conventional TCO's (such as Sc-doped CdO) indicates that this material belongs conceptually to a new class of transparent conductors. For this class of materials, we formulate criteria for the successful combination of high electrical conductivity with complete transparency in the visible range. Our analysis suggests that this set of requirements can be met for a group of novel materials called electrides.Comment: 3 pages, 3 figures, submitted for publicatio

    Tuning the properties of complex transparent conducting oxides: role of crystal symmetry, chemical composition and carrier generation

    Get PDF
    The electronic properties of single- and multi-cation transparent conducting oxides (TCOs) are investigated using first-principles density functional approach. A detailed comparison of the electronic band structure of stoichiometric and oxygen deficient In2_2O3_3, α\alpha- and β\beta-Ga2_2O3_3, rock salt and wurtzite ZnO, and layered InGaZnO4_4 reveals the role of the following factors which govern the transport and optical properties of these TCO materials: (i) the crystal symmetry of the oxides, including both the oxygen coordination and the long-range structural anisotropy; (ii) the electronic configuration of the cation(s), specifically, the type of orbital(s) -- ss, pp or dd -- which form the conduction band; and (iii) the strength of the hybridization between the cation's states and the p-states of the neighboring oxygen atoms. The results not only explain the experimentally observed trends in the electrical conductivity in the single-cation TCO, but also demonstrate that multicomponent oxides may offer a way to overcome the electron localization bottleneck which limits the charge transport in wide-bandgap main-group metal oxides. Further, the advantages of aliovalent substitutional doping -- an alternative route to generate carriers in a TCO host -- are outlined based on the electronic band structure calculations of Sn, Ga, Ti and Zr-doped InGaZnO4_4. We show that the transition metal dopants offer a possibility to improve conductivity without compromising the optical transmittance

    The two-fluid model with superfluid entropy

    Full text link
    The two-fluid model of liquid helium is generalized to the case that the superfluid fraction has a small entropy content. We present theoretical arguments in favour of such a small superfluid entropy. In the generalized two-fluid model various sound modes of He  \;II are investigated. In a superleak carrying a persistent current the superfluid entropy leads to a new sound mode which we call sixth sound. The relation between the sixth sound and the superfluid entropy is discussed in detail.Comment: 22 pages, latex, published in Nuovo Cimento 16 D (1994) 37

    On the de Haas-van Alphen effect in inhomogeneous alloys

    Full text link
    We show that Landau level broadening in alloys occurs naturally as a consequence of random variations in the local quasiparticle density, without the need to consider a relaxation time. This approach predicts Lorentzian-broadened Landau levels similar to those derived by Dingle using the relaxation-time approximation. However, rather than being determined by a finite relaxation time Ď„\tau, the Landau-level widths instead depend directly on the rate at which the de Haas-van Alphen frequency changes with alloy composition. The results are in good agreement with recent data from three very different alloy systems.Comment: 5 pages, no figure

    On the Aggregation of Inertial Particles in Random Flows

    Full text link
    We describe a criterion for particles suspended in a randomly moving fluid to aggregate. Aggregation occurs when the expectation value of a random variable is negative. This random variable evolves under a stochastic differential equation. We analyse this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic differential equation is a Langevin equation.Comment: 16 pages, 2 figure

    Classical and Quantum Chaos in a quantum dot in time-periodic magnetic fields

    Full text link
    We investigate the classical and quantum dynamics of an electron confined to a circular quantum dot in the presence of homogeneous Bdc+BacB_{dc}+B_{ac} magnetic fields. The classical motion shows a transition to chaotic behavior depending on the ratio ϵ=Bac/Bdc\epsilon=B_{ac}/B_{dc} of field magnitudes and the cyclotron frequency ω~c{\tilde\omega_c} in units of the drive frequency. We determine a phase boundary between regular and chaotic classical behavior in the ϵ\epsilon vs ω~c{\tilde\omega_c} plane. In the quantum regime we evaluate the quasi-energy spectrum of the time-evolution operator. We show that the nearest neighbor quasi-energy eigenvalues show a transition from level clustering to level repulsion as one moves from the regular to chaotic regime in the (ϵ,ω~c)(\epsilon,{\tilde\omega_c}) plane. The Δ3\Delta_3 statistic confirms this transition. In the chaotic regime, the eigenfunction statistics coincides with the Porter-Thomas prediction. Finally, we explicitly establish the phase space correspondence between the classical and quantum solutions via the Husimi phase space distributions of the model. Possible experimentally feasible conditions to see these effects are discussed.Comment: 26 pages and 17 PstScript figures, two large ones can be obtained from the Author

    Surface effects on nanowire transport: numerical investigation using the Boltzmann equation

    Full text link
    A direct numerical solution of the steady-state Boltzmann equation in a cylindrical geometry is reported. Finite-size effects are investigated in large semiconducting nanowires using the relaxation-time approximation. A nanowire is modelled as a combination of an interior with local transport parameters identical to those in the bulk, and a finite surface region across whose width the carrier density decays radially to zero. The roughness of the surface is incorporated by using lower relaxation-times there than in the interior. An argument supported by our numerical results challenges a commonly used zero-width parametrization of the surface layer. In the non-degenerate limit, appropriate for moderately doped semiconductors, a finite surface width model does produce a positive longitudinal magneto-conductance, in agreement with existing theory. However, the effect is seen to be quite small (a few per cent) for realistic values of the wire parameters even at the highest practical magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure
    • …
    corecore