369 research outputs found

    Robust nanopatterning by laser-induced dewetting of metal nanofilms

    Full text link
    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1\leq h\leq8 nm on SiO_{2} was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with monomodal size distribution and short range ordering in nearest-neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting

    Self-organized metal nanostructures through laser driven thermocapillary convection

    Full text link
    When ultrathin metal films are subjected to multiple cycles of rapid melting and resolidification by a ns pulsed laser, spatially correlated interfacial nanostructures can result from a competition among several possible thin film self-organizing processes. Here we investigate self-organization and the ensuing length scales when Co films (1-8 nm thick) on SiO_{\text{2}} surfaces are repeatedly and rapidly melted by non-uniform (interference) laser irradiation. Pattern evolution produces nanowires, which eventually break-up into nanoparticles exhibiting spatial order in the nearest neighbor spacing, \lambda_{NN2}.The scaling behavior is consistent with pattern formation by thermocapillary flow and a Rayleigh-like instability. For h_{0}\leq2 nm, a hydrodynamic instability of a spinodally unstable film leads to the formation of nanoparticles.Comment: 10 pages, 3 figure

    Loop-Mediated Isothermal Amplification: An Advanced Method for the Detection of Giardia

    Get PDF
    This chapter provides a reliable and quick method for detection of Giardia duodenalis (which causes a dangerous diarrheal disease), prevention of further spreading, identification of the source of contamination, and eventually minimize health risk and economic damage normally caused by an outbreak. The loop-mediated isothermal amplification (LAMP) method is based on the enrichment of parasite-specific nucleotide sequences, similar to PCR, but it is significantly faster and less susceptible to interference. Here, we give an overview of how we developed this method, and using the example of G. duodenalis as a water-associated pathogen, we present an optimized examination scheme for its detection in water. For this purpose, we have analyzed data from extensive electronic libraries PubMed®/MEDLINE®, filtered out relevant articles with a keyword search, and summarized them. The number of publications on LAMP method has generally increased steadily since its first report in 2000. LAMP, used for detection of Giardia, especially surpasses all other methods due to the high specificity, sensitivity, robustness, and cost effectiveness. The ever-increasing number of publications on application of LAMP is similar to the development of PCR in the 1990s of the last century. Certainly, the method will be further developed in future, but it already offers many advantages over other methods for effective detection of G. duodenalis infections and will therefore certainly gain in popularity

    The Glove-like Structure of the Conserved Membrane Protein TatC Provides Insight into Signal Sequence Recognition in Twin-Arginine Translocation

    Get PDF
    In bacteria, two signal-sequence-dependent secretion pathways translocate proteins across the cytoplasmic membrane. Although the mechanism of the ubiquitous general secretory pathway is becoming well understood, that of the twin-arginine translocation pathway, responsible for translocation of folded proteins across the bilayer, is more mysterious. TatC, the largest and most conserved of three integral membrane components, provides the initial binding site of the signal sequence prior to pore assembly. Here, we present two crystal structures of TatC from the thermophilic bacteria Aquifex aeolicus at 4.0 Ă… and 6.8 Ă… resolution. The membrane architecture of TatC includes a glove-shaped structure with a lipid-exposed pocket predicted by molecular dynamics to distort the membrane. Correlating the biochemical literature to these results suggests that the signal sequence binds in this pocket, leading to structural changes that facilitate higher order assemblies

    Social Determinants of Health and Distance Learning in Italy in the Era of the SARS-CoV-2 Pandemic

    Get PDF
    Objectives: To investigate the experiences by distance learning (DL) method during the first wave of the SARS-CoV-2 pandemic in Italy, and to search for correlations with purported experiences and respective levels of social determinants of health (SDH). Study design and methods: Cross-sectional online survey, investigating various SDH and parents’ attitude towards DL, proposed 6 months after the beginning of the pandemic to a sample population of parents with school-aged children throughout Italy. Results: A total of 3791 questionnaires were analyzed. Non-Italian parents complained more frequently of difficulties in providing support to their children in DL due to poor digital skills (p = 0.01), lack of good-quality digital equipment (p = 0.01), problems with the Italian language (p < 0.001), and a lower level of education (p < 0.001). When parents lived apart, greater difficulties in concentration in children using DL (p = 0.05) and a lower parental capacity to support DL (p = 0.002) were reported. Adequate digital structures appeared related to living in owned compared to rented property, higher levels of parental education, and better familial financial situations. Conclusions: Students from families with financial difficulties and low levels of parental education, or even those living in houses for rent or having separated parents, may be disadvantaged in an educational context since the introduction of DL

    Investigation of pulsed laser induced dewetting in nanoscopic metal films

    Full text link
    Hydrodynamic pattern formation (PF) and dewetting resulting from pulsed laser induced melting of nanoscopic metal films have been used to create spatially ordered metal nanoparticle arrays with monomodal size distribution on SiO_{\text{2}}/Si substrates. PF was investigated for film thickness h\leq7 nm < laser absorption depth \sim11 nm and different sets of laser parameters, including energy density E and the irradiation time, as measured by the number of pulses n. PF was only observed to occur for E\geq E_{m}, where E_{m} denotes the h-dependent threshold energy required to melt the film. Even at such small length scales, theoretical predictions for E_{m} obtained from a continuum-level lumped parameter heat transfer model for the film temperature, coupled with the 1-D transient heat equation for the substrate phase, were consistent with experimental observations provided that the thickness dependence of the reflectivity of the metal-substrate bilayer was incorporated into the analysis. The spacing between the nanoparticles and the particle diameter were found to increase as h^{2} and h^{5/3} respectively, which is consistent with the predictions of the thin film hydrodynamic (TFH) dewetting theory. These results suggest that fast thermal processing can lead to novel pattern formation, including quenching of a wide range of length scales and morphologies.Comment: 36 pages, 11 figures, 1 tabl
    • …
    corecore