2,466 research outputs found
Early application of solar electric propulsion to a 1-astronomical-unit out-of-the-ecliptic mission
Solar electric propulsion for out-of-ecliptic solar orbit missio
Exact ground states of generalized Hubbard models
We present a simple method for the construction of exact ground states of
generalized Hubbard models in arbitrary dimensions. This method is used to
derive rigorous criteria for the stability of various ground state types, like
the -pairing state, or N\'eel and ferromagnetic states. Although the
approach presented here is much simpler than the ones commonly used, it yields
better bounds for the region of stability.Comment: Revtex, 8 page
The challenges and opportunities of supersonic transport propulsion technology
The major challenges confronting the propulsion community for civil supersonic transport applications are identified: high propulsion system efficiency at both supersonic and subsonic cruise conditions, low-cost fuel with adequate thermal stability at high temperatures, low noise cycles and exhaust systems, low emission combustion systems, and low drag installations. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful airplane that satisfies environmental constraints
Technology and benefits of aircraft counter rotation propellers
Results are reported of a NASA sponsored analytical investigation into the merits of advanced counter rotation propellers for Mach 0.80 commercial transport application. Propeller and gearbox performance, acoustics, vibration characteristics, weight, cost and maintenance requirements for a variety of design parameters and special features were considered. Fuel savings in the neighborhood of 8 percent relative to single rotation configurations are feasible through swirl recovery and lighter gearboxes. This is the net gain which includes a 5 percent acoustic treatment weight penalty to offset the broader frequency spectrum noise produced by counter rotation blading
Magnetic properties of the three-band Hubbard model
We present magnetic properties of the three-band Hubbard model in the para-
and antiferromagnetic phase on a hypercubic lattice calculated with the
Dynamical Mean-Field Theory (DMFT). To allow for solutions with broken
spin-symmetry we extended the approach to lattices with AB-like structure.
Above a critical sublattice magnetization m_d=0.5 one can observe rich
structures in the spectral-functions similar to the t-J model which can be
related to the well known bound states for one hole in the Neel-background. In
addition to the one-particle properties we discuss the static
spin-susceptiblity in the paramagnetic state at the points q=0 and
q=(pi,pi,pi,...) for different dopings delta. The delta-T-phase-diagram
exhibits an enhanced stability of the antiferromagnetic state for
electron-doped systems in comparison to hole-doped. This asymmetry in the phase
diagram is in qualitative agreement with experiments for high-T_c materials.Comment: revised version, to be publishe
Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: Do they differ from unrestored and natural sites?
This study brings together plot-scale growing season fluxes of carbon dioxide (CO2) and methane (CH4) from six Canadian peatlands restored by the moss layer transfer technique (MLTT) and compares them with fluxes from adjacent unrestored and natural peatlands to determine1) if CO2 and CH4 fluxes return to natural-site levels and 2) whether the ecohydrological controls (e.g. water table, plant cover) on these fluxes are similar between treatments. We also examine differences between eastern (humid/maritime climate) and western (sub-humid climate) Canadian plots, and between restoration of former horticultural peat extraction sites and oil industry well-pads. Our results indicate that restored site fluxes of CO2 and CH4 are not significantly different between eastern and western Canada or between a restored well-pad and restored horticultural peat extraction sites. Restoration resulted in gross primary production rates similar to those at natural plots and significantly greater than those at unrestored plots. Ecosystem respiration was not significantly different at restored and unrestored plots, and was lower at both than at natural plots. Methane emission was significantly greater at restored plots than at unrestored plots, but remained significantly lower on average than at natural plots. Water table was a significant control on CH4 flux across restored and natural plots. Vascular plant cover was significantly related to CO2 uptake (gross photosynthesis) at restored and unrestored plots, but not at natural plots, while higher moss cover resulted in significantly greater net uptake of CO2 at natural plots but not at restored and unrestored plots. Overall, MLTT restoration greatly alters CO2 and CH4 dynamics compared to unrestored areas but fluxes remain, on average, significantly different from those in natural peatlands, in both the magnitude of mean growing season fluxes and controls on variation in these fluxes among plots. Peatland restoration by MLTT results in reduced CO2 emissions and higher CH4 emissions; however, more year-round measurements in more restored peatlands over longer periods post-restoration are needed to improve greenhouse gas emission estimates for restored Canadian peatlands
Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem
Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron
less than half filling is generalized to the case where all possible
nearest-neighbor Coulomb interactions (the density-density interaction ,
bond-charge interaction , exchange interaction , and hopping of double
occupancies ) are included. It is shown that for ferromagnetic exchange
coupling () ground states with maximum spin are stable already at finite
Hubbard interaction . For non-bipartite lattices this requires a hopping
amplitude . For vanishing one obtains as in
Nagaoka's theorem. This shows that the exchange interaction is important
for stabilizing ferromagnetism at finite . Only in the special case
the ferromagnetic state is stable even for , provided the lattice allows
the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure
Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions
Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC¿MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formatio
Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions
Resistivity measurements have been performed on a low (LR)- and high
(HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor.
While the HR sample was synthesized following the standard procedure, the LR
crystal is a result of a somewhat modified synthesis route. According to their
residual resistivities and residual resistivity ratios, the LR crystal is of
distinctly superior quality. He-gas pressure was used to study the effect of
hydrostatic pressure on the different transport regimes for both variants. The
main results of these comparative investigations are (i) a significant part of
the inelastic-scattering contribution, which causes the anomalous rho(T)
maximum in standard HR crystals around 90 K, is sample dependent, i.e.
extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a
strongly temperature-dependent behavior at T > T* to an only weakly T-dependent
rho(T) at T < T* is unaffected by this scattering contribution and thus marks
an independent property, most likely a second-order phase transition, (iii)
both variants reveal a rho(T) proportional to AT^2 dependence at low
temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent
coefficients A and upper bounds for the T^2 behavior measured by T_0. The
latter result is inconsistent with the T^2 dependence originating from coherent
Fermi-liquid excitations.Comment: 8 pages, 6 figure
Manned Mars landing missions using electric propulsion
Manned Mars landing missions using electric propulsion - evaluation of various mission profile
- …
