2 research outputs found

    First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    Get PDF
    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe

    A phylogenetic analysis of sex-specific evolution of ecological morphology in Liolaemus lizards

    No full text
    Adaptive radiation theory predicts that phenotypic traits involved in ecological performance evolve in different directions in populations subjected to divergent natural selection, resulting in the evolution of ecological diversity. This idea has largely been supported through comparative studies exploring relationships between ecological preferences and quantitative traits among different species. However, intersexual perspectives are often ignored. Indeed, although it is well established that intersexual competition and sex-specific parental and reproductive roles may often subject sex-linked phenotypes to antagonistic selection effects, most ecomorphological research has explored adaptive evolution on a single sex, or on means obtained from both sexes together. The few studies taking sexual differences into account reveal the occurrence of sex-specific ecomorphs in some clades of lizards, and conclude that the independent contribution of the sexes to the morphological diversity produced by adaptive radiation can be substantial. Here, we investigate whether microhabitat use results in the evolution of sex-specific ecomorphs across 44 Liolaemus lizard species. We found that microhabitat structure does not predict variation in body size and shape in either of the sexes. Yet, we found that males and females tend to occupy significantly different positions in multivariate morphological spaces, indicating that treating males and females as ecologically and phenotypically equivalent units may lead to incomplete or mistaken estimations of the diversity produced by adaptive evolution. © The Ecological Society of Japan 2009
    corecore