98 research outputs found

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years 4 and 5

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in 2013 December. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects that were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object (NEO) and Main Belt asteroid (MBA) populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original Wide-field Infrared Survey Explorer survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present

    NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos

    Get PDF
    We present preliminary diameters and albedos for 7,959 asteroids detected in the first year of the NEOWISE Reactivation mission. 201 are near-Earth asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.Comment: 42 pages, 5 figure

    NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 um and 4.6 um of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper we present thermal model fits of asteroid diameters for 170 NEOs and 6110 MBAs detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1-sigma) of previously measured values. Diameters for the MBAs are within 17% (1-sigma). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.Comment: Accepted for publication in A

    Co-movement of astral microtubules, organelles and F-actin by dynein and actomyosin forces in frog egg cytoplasm

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pelletier, J. F., Field, C. M., Furthauer, S., Sonnett, M., & Mitchison, T. J. Co-movement of astral microtubules, organelles and F-actin by dynein and actomyosin forces in frog egg cytoplasm. Elife, 9, (2020): e60047, https://doi.org/10.7554/eLife.60047.How bulk cytoplasm generates forces to separate post-anaphase microtubule (MT) asters in Xenopus laevis and other large eggs remains unclear. Previous models proposed that dynein-based, inward organelle transport generates length-dependent pulling forces that move centrosomes and MTs outwards, while other components of cytoplasm are static. We imaged aster movement by dynein and actomyosin forces in Xenopus egg extracts and observed outward co-movement of MTs, endoplasmic reticulum (ER), mitochondria, acidic organelles, F-actin, keratin, and soluble fluorescein. Organelles exhibited a burst of dynein-dependent inward movement at the growing aster periphery, then mostly halted inside the aster, while dynein-coated beads moved to the aster center at a constant rate, suggesting organelle movement is limited by brake proteins or other sources of drag. These observations call for new models in which all components of the cytoplasm comprise a mechanically integrated aster gel that moves collectively in response to dynein and actomyosin forces.This work was supported by NIH grant R35GM131753 (TJM) and MBL fellowships from the Evans Foundation, MBL Associates, and the Colwin Fund (TJM and CMF). JFP was supported by the Fannie and John Hertz Foundation, the Fakhri lab at MIT, the MIT Department of Physics, and the MIT Center for Bits and Atoms

    Short GRB 130603B: Discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-ray excess

    Full text link
    We present radio, optical/NIR, and X-ray observations of the afterglow of the short-duration 130603B, and uncover a break in the radio and optical bands at 0.5 d after the burst, best explained as a jet break with an inferred jet opening angle of 4-8 deg. GRB 130603B is only the third short GRB with a radio afterglow detection to date, and the first time that a jet break is evident in the radio band. We model the temporal evolution of the spectral energy distribution to determine the burst explosion properties and find an isotropic-equivalent kinetic energy of (0.6-1.7) x 10^51 erg and a circumburst density of 5 x 10^-3-30 cm^-3. From the inferred opening angle of GRB 130603B, we calculate beaming-corrected energies of Egamma (0.5-2) x 10^49 erg and EK (0.1-1.6) x 10^49 erg. Along with previous measurements and lower limits we find a median short GRB opening angle of 10 deg. Using the all-sky observed rate of 10 Gpc^-3 yr^-1, this implies a true short GRB rate of 20 yr^-1 within 200 Mpc, the Advanced LIGO/VIRGO sensitivity range for neutron star binary mergers. Finally, we uncover evidence for significant excess emission in the X-ray afterglow of GRB 130603B at >1 d and conclude that the additional energy component could be due to fall-back accretion or spin-down energy from a magnetar formed following the merger.Comment: Submitted to ApJ; emulateapj style; 10 pages, 1 table, 3 figure

    The Perihelion Emission of Comet C/2010 L5 (WISE)

    Get PDF
    The only Halley-type comet discovered by the Wide-Field Infrared Survey Explorer (WISE), C/2010 L5 (WISE), was imaged three times by WISE, and it showed a significant dust tail during the second and third visits (2010 June and July, respectively). We present here an analysis of the data collected by WISE, putting estimates on the comet's size, dust production rate, gas production (CO+CO_2) rate, and active fraction. We also present a detailed description of a novel tail-fitting technique that allows the commonly used syndyne–synchrone models to be used analytically, thereby giving more robust results. We find that C/2010 L5's dust tail was likely formed by strong emission, likely in the form of an outburst, occurring when the comet was within a few days of perihelion. Analyses of the June and July data independently agree on this result. The two separate epochs of dust tail analysis independently suggest a strong emission event close to perihelion. The average size of the dust particles in the dust tail increased between the epochs, suggesting that the dust was primarily released in a short period of time, and the smaller dust particles were quickly swept away by solar radiation pressure, leaving the larger particles behind. The difference in CO_2 and dust production rates measured in 2010 June and July is not consistent with "normal" steady-state gas production from a comet at these heliocentric distances, suggesting that much of the detected CO_2 and dust was produced in an episodic event. Together, these conclusions suggest that C/2010 L5 experienced a significant outburst event when the comet was close to perihelion
    corecore