4 research outputs found

    Multiple var2csa-Type PfEMP1 Genes Located at Different Chromosomal Loci Occur in Many Plasmodium falciparum Isolates

    Get PDF
    BACKGROUND:The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (approximately 26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. CONCLUSIONS/SIGNIFICANCE:Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria

    Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1

    No full text
    Plasmodium falciparum malaria is a major cause of mortality and severe morbidity. Its virulence is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is central to both. Here, we present evidence of a P. falciparum evasion mechanism not previously documented: the masking of PfEMP1-specific IgG epitopes by nonspecific IgM. Nonspecific IgM binding to erythrocytes infected by parasites expressing the PfEMP1 protein VAR2CSA (involved in placental malaria pathogenesis and protective immunity) blocked subsequent specific binding of human monoclonal IgG to the Duffy binding-like (DBL) domains DBL3X and DBL5ε of this PfEMP1 variant. Strikingly, a VAR2CSA-specific monoclonal antibody that binds outside these domains and can inhibit IE adhesion to the specific VAR2CSA receptor chondroitin sulfate A was unaffected. Nonspecific IgM binding protected the parasites from FcγR-dependent phagocytosis of VAR2CSA+ IEs, but it did not affect IE adhesion to chondroitin sulfate A or lead to C1q deposition on IEs. Taken together, our results indicate that the VAR2CSA affinity for nonspecific IgM has evolved to allow placenta-sequestering P. falciparum to evade acquired protective immunity without compromising VAR2CSA function or increasing IE susceptibility to complement-mediated lysis. Furthermore, functionally important PfEMP1 epitopes not prone to IgM masking are likely to be particularly important targets of acquired protective immunity to P. falciparum malaria
    corecore