1,563 research outputs found

    Self-Tuning Dark Energy in Brane World Cosmology

    Full text link
    Recently, the self-tuning mechanism of cancellation of vacuum energy has been proposed in which our universe is a flat 3-brane in a 5-dimensional spacetime. In this letter, the self-tuning mechanism of dark energy is proposed by considering the cosmological matter in the brane world. In our model, the bulk scalar field takes the role of the dark energy and its value is slowly varying in time. The claim is that even if the enormous amount of vacuum energy exists on the brane we can adjust the present value of the dark energy to be consistent with the current observations. In this self-tuning mechanism, the existence of the constant of integration associated with the bulk scalar is crucial.Comment: 11pages, LaTe

    Quasi Non-linear Evolution of Stochastic Bias

    Full text link
    It is generally believed that the spatial distribution of galaxies does not trace that of the total mass. The understanding of the bias effect is therefore necessary to determine the cosmological parameters and the primordial density fluctuation spectrum from the galaxy survey. The deterministic description of bias may not be appropriate because of the various stochasticity of galaxy formation process. In nature, the biasing is epoch dependent and recent deep survey of the galaxy shows the large biasing at high redshift. Hence, we investigate quasi non-linear evolution of the stochastic bias by using the tree level perturbation method. Especially, the influence of the initial cross correlation on the evolution of the skewness and the bi-spectrum is examined in detail. We find that the non-linear bias can be generated dynamically. The small value of the initial cross correlation can bend the \dg-\dm relation effectively and easily lead to the negative curvature (b2<0b_2<0). We also propose a method to predict the bias, cross correlation and skewness at high redshift. As an illustration, the possibility of the large biasing at high redshift is discussed. Provided the present bias parameter as b=1.5b=1.5 and Ω=1.0\Omega=1.0, we predict the large scale bias as b=4.63b=4.63 at z=3z=3 by fitting the bi-spectrum to the Lick catalog data. Our results will be important for the future deep sky survey.Comment: 20 pages, 5 Encapsulated Postscript figures, aastex, final version to appear in Ap

    Wavelet analysis of one-dimensional cosmological density fluctuations

    Get PDF
    Wavelet analysis is proposed as a new tool for studying the large-scale structure formation of the universe. To reveal its usefulness, the wavelet decomposition of one-dimensional cosmological density fluctuations is performed. In contrast with the Fourier analysis, the wavelet analysis has advantage of its ability to keep the information for location of local density peaks in addition to that for their scales. The wavelet decomposition of evolving density fluctuations with various initial conditions is examined. By comparing the wavelet analysis with the usual Fourier analysis, we conclude that the wavelet analysis is promising as the data analysis method for the Sloan Digital Sky Survey and COBE

    Braneworld Cosmological Perturbation Theory at Low Energy

    Full text link
    Homogeneous cosmology in the braneworld can be studied without solving bulk equations of motion explicitly. The reason is simply because the symmetry of the spacetime restricts possible corrections in the 4-dimensional effective equations of motion. It would be great if we could analyze cosmological perturbations without solving the bulk. For this purpose, we combine the geometrical approach and the low energy gradient expansion method to derive the 4-dimensional effective action. Given our effective action, the standard procedure to obtain the cosmological perturbation theory can be utilized and the temperature anisotropy of the cosmic background radiation can be computed without solving the bulk equations of motion explicitly.Comment: 10 pages, Based on a talk presented at ACRGR4, the 4th Australasian Conference on General Relativity and Gravitation, Monash University, Melbourne, January 2004. To appear in the proceedings, in General Relativity and Gravitatio

    Hawking Radiation from Fluctuating Black Holes

    Get PDF
    Classically, black Holes have the rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate the cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.Comment: 35pages, 4 figure
    corecore