732 research outputs found

    High Spin-low Spin Crossover and Antiferromagnetic Interactions in Tris(1-pyrrolidinecarbodithioato)iron(III) and the 4-morpholine (FeM) and Dibutyl Analogs, Effect of Recrystallization Solvent, and Crystal Structure of FeM·nitrobenzene

    Get PDF
    High sensitivity magnetic susceptibility determinations, especially in the range 1.2-4.2 K on pure and dilute tris(pyrrolidinecarbodithioato)iron(III) (FeP) in its high spin form, show that a maximum at about 2 K is caused by antiferromagnetic interactions. The analogous chromium(III) complex does not exhibit significant antiferromagnetism compared to that of the iron complex, and it is likely that the upper e electrons possessed by the iron and not by the chromium are responsible for the bulk of the antiferromagnetism. As the iron atoms are about 9 Å apart in discrete molecules, the antiferromagnetic interactions presumably occur between unpaired spins delocalized on to the ligands of adjacent molecules. This is in keeping with NMR evidence that spin delocalization is greater in the iron(III) than in the chromium(III) complex. When diluted with large amounts of the cobalt(III) analog (CoP), FeP exhibits a spin state equilibrium. Thus, the structure of the FeP molecule is modified slightly (presumably with shortening of the Fe-S bond) to approach that of the CoP host lattice, which has a shorter metal-sulfur bond. The previous history of the samples of ferric dithiocarbamate complexes is shown to be far more important than had previously been suspected: When crystallized from benzene, FeP exhibits a high spin-low spin equilibrium, in constrast with the pure high spin behavior of the complex when not crystallized from benzene. The effect of adding 7% of benzene to the lattice is much greater than that of adding 50% of CoP. The dibutyl analog shows similar effects. The tris(4- morpholinecarbodithioato-S,S\u27)iron(III) complex FeM is shown, by single crystal x-ray data, to contain short Fe-S bond lengths (average 2.353 Å) when recrystallized from nitrobenzene. This indicates that the complex is principally low spin, in keeping with the observed magnetism and with the general strong solvent effect on the spin state. It is now proposed that the difference in Fe-S bond lengths between FeP crystallized from chloroform and FeP from benzene (the reverse of the expected differences) is due to experimental error. Crystal data for FeM-nitrobenzene: space group P21/c, Z = 4, a = 9.713(3) Å, b = 31.419(8) Å, c = 9.718(2) Å, β = 105.04(2)°, V = 2864 Å3, R = 3.3%, 2712 reflections

    Mechanism of Tacrine Block at Adult Human Muscle Nicotinic Acetylcholine Receptors

    Get PDF
    We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor

    Targeted Molecular Dynamics Study of C-Loop Closure and Channel Gating in Nicotinic Receptors

    Get PDF
    The initial coupling between ligand binding and channel gating in the human α7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the α7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding

    Modular Nucleic Acid Assembled p/MHC Microarrays for Multiplexed Sorting of Antigen-Specific T Cells

    Get PDF
    The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called “Nucleic Acid Cell Sorting (NACS)”, single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection

    Control of Cation Permeation through the Nicotinic Receptor Channel

    Get PDF
    We used molecular dynamics (MD) simulations to explore the transport of single cations through the channel of the muscle nicotinic acetylcholine receptor (nAChR). Four MD simulations of 16 ns were performed at physiological and hyperpolarized membrane potentials, with and without restraints of the structure, but all without bound agonist. With the structure unrestrained and a potential of −100 mV, one cation traversed the channel during a transient period of channel hydration; at −200 mV, the channel was continuously hydrated and two cations traversed the channel. With the structure restrained, however, cations did not traverse the channel at either membrane potential, even though the channel was continuously hydrated. The overall results show that cation selective transport through the nAChR channel is governed by electrostatic interactions to achieve charge selectivity, but ion translocation relies on channel hydration, facilitated by a trans-membrane field, coupled with dynamic fluctuations of the channel structure

    MULTIPASS: gestion des consentements pour accéder aux données des exploitations dans une chaîne de confiance afin de favoriser l'émergence de nouveaux services pour les agriculteurs

    Get PDF
    12th EFITA International Conference, Rhode island, GRC, 27-/06/2019 - 29/06/2019International audienceWith the emergence of digital technologies, farms become a relevant source of data to meet the challenges of multi-performance agriculture. Beyond the services provided, access to farmers' data depends on a clear understanding of their use, which must be done in a transparent way. Several codes of conduct at a national or international level push for a voluntary commitment to respect some good practices in the use of agricultural data. To provide a tool and answer farmer's questions on the control of their data and the transparency of the data processing, the partners of the MULTIPASS project, have imagined an interoperable ecosystem of farmer consents management, protecting farmers from no consented uses of their data.Farmers' expectations of such an ecosystem have been expressed during workshops. They want to better identify existing data flows, including actors, data processes, and data clusters. Based on the farmers' expectations, the MULTIPASS project stakeholders have proposed the architecture of an ecosystem integrating two consent management tools as "pilots". This ecosystem should take in charge the interoperability between each consent management tools or with future tools. This solution is based on a shared typology of data and data processes as well as on the specifications of the consent message content. All these elements should be easily accessible to meet the interoperability need of the ecosystem. It is also based on a router, which provides unified access to consent management tools (using API). In particular, it provides the farmer (beneficiary) with an exhaustive view of his/her consents (which can be distributed on several consent management systems), meeting farmers' expectations for transparency. It is also the point where a data provider can check whether the consent required to provide data exists, without needing to know which consent management system is concerned. In this project, the stakeholders want to demonstrate to agricultural professional organizations the benefits and feasibility of a consent management ecosystem. By strengthening the confidence of farmers to share data, the project will allow the emergence of new knowledge and new services

    Senescent cells limit p53 activity via multiple mechanisms to remain viable

    Get PDF
    Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology

    Senescent cells limit p53 activity via multiple mechanisms to remain viable

    Get PDF
    Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.</p
    corecore