8,015 research outputs found
Bulge plus disc and S\'ersic decomposition catalogues for 16,908 galaxies in the SDSS Stripe 82 co-adds: A detailed study of the structural measurements
Quantitative characterization of galaxy morphology is vital in enabling
comparison of observations to predictions from galaxy formation theory.
However, without significant overlap between the observational footprints of
deep and shallow galaxy surveys, the extent to which structural measurements
for large galaxy samples are robust to image quality (e.g., depth, spatial
resolution) cannot be established. Deep images from the Sloan Digital Sky
Survey (SDSS) Stripe 82 co-adds provide a unique solution to this problem -
offering magnitudes improvement in depth with respect to SDSS Legacy
images. Having similar spatial resolution to Legacy, the co-adds make it
possible to examine the sensitivity of parametric morphologies to depth alone.
Using the Gim2D surface-brightness decomposition software, we provide public
morphology catalogs for 16,908 galaxies in the Stripe 82 co-adds. Our
methods and selection are completely consistent with the Simard et al. (2011)
and Mendel et al. (2014) photometric decompositions. We rigorously compare
measurements in the deep and shallow images. We find no systematics in total
magnitudes and sizes except for faint galaxies in the -band and the
brightest galaxies in each band. However, characterization of bulge-to-total
fractions is significantly improved in the deep images. Furthermore, statistics
used to determine whether single-S\'ersic or two-component (e.g., bulge+disc)
models are required become more bimodal in the deep images. Lastly, we show
that asymmetries are enhanced in the deep images and that the enhancement is
positively correlated with the asymmetries measured in Legacy images.Comment: 27 pages, 14 figures. MNRAS accepted. Our catalogs are available in
TXT and SQL formats at
http://orca.phys.uvic.ca/~cbottrel/share/Stripe82/Catalogs
Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size
We use a sample of 43,690 galaxies selected from the Sloan Digital Sky Survey
Data Release 4 to study the systematic effects of specific star formation rate
(SSFR) and galaxy size (as measured by the half light radius, r_h) on the
mass-metallicity relation. We find that galaxies with high SSFR or large r_h
for their stellar mass have systematically lower gas phase-metallicities (by up
to 0.2 dex) than galaxies with low SSFR or small r_h. We discuss possible
origins for these dependencies, including galactic winds/outflows, abundance
gradients, environment and star formation rate efficiencies.Comment: Accepted by ApJ Letter
The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex-or miRNA-induced silencing complex (miRISC)-can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression. © 2011 European Molecular Biology Organization
The signature of dissipation in the mass-size relation: are bulges simply spheroids wrapped in a disc?
The relation between the stellar mass and size of a galaxy's structural
subcomponents, such as discs and spheroids, is a powerful way to understand the
processes involved in their formation. Using very large catalogues of
photometric bulge+disc structural decompositions and stellar masses from the
Sloan Digital Sky Survey Data Release Seven, we carefully define two large
subsamples of spheroids in a quantitative manner such that both samples share
similar characteristics with one important exception: the 'bulges' are embedded
in a disc and the 'pure spheroids' are galaxies with a single structural
component. Our bulge and pure spheroid subsample sizes are 76,012 and 171,243
respectively. Above a stellar mass of ~ M, the mass-size
relations of both subsamples are parallel to one another and are close to lines
of constant surface mass density. However, the relations are offset by a factor
of 1.4, which may be explained by the dominance of dissipation in their
formation processes. Whereas the size-mass relation of bulges in discs is
consistent with gas-rich mergers, pure spheroids appear to have been formed via
a combination of 'dry' and 'wet' mergers.Comment: Accepted for publication in MNRAS, 6 pages, 3 figure
The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations
We present sensitivity estimates for point and resolved astronomical sources
for the current design of the InfraRed Imaging Spectrograph (IRIS) on the
future Thirty Meter Telescope (TMT). IRIS, with TMT's adaptive optics system,
will achieve unprecedented point source sensitivities in the near-infrared
(0.84 - 2.45 {\mu}m) when compared to systems on current 8-10m ground based
telescopes. The IRIS imager, in 5 hours of total integration, will be able to
perform a few percent photometry on 26 - 29 magnitude (AB) point sources in the
near-infrared broadband filters (Z, Y, J, H, K). The integral field
spectrograph, with a range of scales and filters, will achieve good
signal-to-noise on 22 - 26 magnitude (AB) point sources with a spectral
resolution of R=4,000 in 5 hours of total integration time. We also present
simulated 3D IRIS data of resolved high-redshift star forming galaxies (1 < z <
5), illustrating the extraordinary potential of this instrument to probe the
dynamics, assembly, and chemical abundances of galaxies in the early universe.
With its finest spatial scales, IRIS will be able to study luminous, massive,
high-redshift star forming galaxies (star formation rates ~ 10 - 100 M yr-1) at
~100 pc resolution. Utilizing the coarsest spatial scales, IRIS will be able to
observe fainter, less massive high-redshift galaxies, with integrated star
formation rates less than 1 M yr-1, yielding a factor of 3 to 10 gain in
sensitivity compared to current integral field spectrographs. The combination
of both fine and coarse spatial scales with the diffraction-limit of the TMT
will significantly advance our understanding of early galaxy formation
processes and their subsequent evolution into presentday galaxies.Comment: SPIE Astronomical Instrumentation 201
The infrared imaging spectrograph (IRIS) for TMT: spectrograph design
The Infra-Red Imaging Spectrograph (IRIS) is one of the three first light
instruments for the Thirty Meter Telescope (TMT) and is the only one to
directly sample the diffraction limit. The instrument consists of a parallel
imager and off-axis Integral Field Spectrograph (IFS) for optimum use of the
near infrared (0.84um-2.4um) Adaptive Optics corrected focal surface. We
present an overview of the IRIS spectrograph that is designed to probe a range
of scientific targets from the dynamics and morphology of high-z galaxies to
studying the atmospheres and surfaces of solar system objects, the latter
requiring a narrow field and high Strehl performance. The IRIS spectrograph is
a hybrid system consisting of two state of the art IFS technologies providing
four plate scales (4mas, 9mas, 25mas, 50mas spaxel sizes). We present the
design of the unique hybrid system that combines the power of a lenslet
spectrograph and image slicer spectrograph in a configuration where major
hardware is shared. The result is a powerful yet economical solution to what
would otherwise require two separate 30m-class instruments.Comment: 15 pages, 11 figure
- …
