9 research outputs found

    Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving

    Get PDF
    Synthetic chemists have devoted tremendous effort towards the production of precision synthetic polymers with defined sequences and specific functions. However, the creation of a general technology that enables precise control over monomer sequence, with efficient isolation of the target polymers, is highly challenging. Here, we report a robust strategy for the production of sequence-defined synthetic polymers through a combination of liquid-phase synthesis and selective molecular sieving. The polymer is assembled in solution with real-time monitoring to ensure couplings proceed to completion, on a three-armed star-shaped macromolecule to maximize efficiency during the molecular sieving process. This approach is applied to the construction of sequence-defined polyethers, with side-arms at precisely defined locations that can undergo site-selective modification after polymerization. Using this versatile strategy, we have introduced structural and functional diversity into sequence-defined polyethers, unlocking their potential for real-life applications in nanotechnology, healthcare and information storage

    Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method

    Get PDF
    AbstractIn this research paper we report two ways of controlling the molecular weight cut-off (MWCO) of PEEK membranes prepared via phase inversion and subsequent drying. The two methods explored were the change of polymer concentration in the dope solution – 8wt%, 10wt% and 12wt% – and the variation of solvent filling the pores prior to drying – e.g. water, methanol, acetone, tetrahydrofuran and n-heptane. The results show that it is possible to vary the MWCO from 295gmol−1 to 1400gmol−1 by varying these parameters. A statistical analysis based on a genetic algorithm showed that the Hansen solubility parameter, polarity and their interactions with molar volume were likely to be the most important parameters influencing the performance of PEEK membranes when drying from different solvents. In addition, the drying temperature also proved to have an effect on the membrane performance – the higher the temperature the higher the rejection and the lower the permeance

    Continuously Operated Hydroamination – Toward High Catalytic Performance via Organic Solvent Nanofiltration in a Membrane Reactor

    No full text
    Still, the hydroamination of dienes to form allylic amines is a challenging task in a continuous operation. Herein, we present the performance of a membrane reactor by the implementation of a continuously operated hydroamination reaction of β-myrcene with morpholine. <i>Via</i> application of a poly ether–ether–ketone (PEEK) membrane, operation at elevated temperatures was possible in an integrated reaction/separation unit. First, the kinetics of the hydroamination reaction and relevant membrane characteristics were determined under optimized reaction conditions. Afterward, these results were incorporated in a reactor/separator model to predict the process behavior. With this, catalyst replenishment was adjusted resulting in stable continuous operation. In the end an increase of the turnover number from 460 to 5135 compared to a batch process was achieved. The desired geranyl amines were obtained in very good yields higher than 80%, while an excellent conversion of β-myrcene above 93% was reached in a long-time stable process

    Molecular Separation with Organic Solvent Nanofiltration: A Critical Review

    No full text

    Seeds as oil factories

    No full text

    Molecular Separation with Organic Solvent Nanofiltration: A Critical Review

    No full text
    corecore