36 research outputs found

    UK B.1.1.7 variant exhibits increased respiratory replication and shedding in nonhuman primates.

    Get PDF
    The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, African green monkeys were infected intranasally with either a contemporary D614G or the UK B.1.1.7 variant. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tract tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases. ONE-SENTENCE SUMMARY: UK B.1.1.7 infection of African green monkeys exhibits increased respiratory replication and shedding but no disease enhancement

    Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models

    Get PDF
    We investigate the global texture model of structure formation in cosmogonies with non-zero cosmological constant for different values of the Hubble parameter. We find that the absence of significant acoustic peaks and little power on large scales are robust predictions of these models. However, from a careful comparison with data we conclude that at present we cannot safely reject the model on the grounds of present CMB data. Exclusion by means of galaxy correlation data requires assumptions on biasing and statistics. New, very stringent constraints come from peculiar velocities. Investigating the large-N limit, we argue that our main conclusions apply to all global O(N) models of structure formation.Comment: LaTeX file with RevTex, 27 pages, 23 eps figs., submitted to Phys. Rev. D. A version with higher quality images can be found at http://mykonos.unige.ch/~kunz/download/lam.tar.gz for the LaTeX archive and at http://mykonos.unige.ch/~kunz/download/lam.ps.gz for the compiled PostScript fil

    Combined molnupiravir-nirmatrelvir treatment improves the inhibitory effect on SARS-CoV-2 in macaques

    Get PDF
    The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection

    Three-Week Old Pigs Are Not Susceptible to Productive Infection with SARS-COV-2

    Get PDF
    As the COVID-19 pandemic moves into its third year, there remains a need for additional animal models better recapitulating severe COVID to study SARS-CoV-2 pathogenesis and develop countermeasures, especially treatment options. Pigs are known intermediate hosts for many viruses with zoonotic potential and are susceptible to infection with alpha, beta and delta genera of coronaviruses. Herein, we infected young (3 weeks of age) pigs with SARS-CoV-2 using a combination of respiratory and parenteral inoculation routes. Pigs did not develop clinical disease, nor macroscopic or microscopic pathologic lesions upon SARS-CoV-2 infection. Despite occasional low levels of SARS-CoV-2 genomic RNA in the respiratory tract, subgenomic RNA and infectious virus were never found, and SARS-CoV-2-specific adaptive immune responses were not detectable over the 13-day study period. We concluded that pigs are not susceptible to productive SARS-CoV-2 infection and do not serve as a SARS-CoV-2 reservoir for zoonotic transmission.</jats:p

    Immune-Mediated Systemic Vasculitis as the Proposed Cause of Sudden-Onset Sensorineural Hearing Loss following Lassa Virus Exposure in Cynomolgus Macaques

    No full text
    Lassa virus is one of the most common causes of viral hemorrhagic fever. A frequent, but as yet unexplained, consequence of infection with Lassa virus is acute, sudden-onset sensorineural hearing loss in one or both ears. Deafness is observed in approximately 30% of surviving Lassa fever patients, an attack rate that is approximately 300% higher than mumps virus infection, which was previously thought to be the most common cause of virus-induced deafness. Here, we provide evidence from Lassa virus-infected cynomolgus macaques implicating an immune-mediated vasculitis syndrome underlying the pathology of Lassa fever-associated deafness. These findings could change the way human Lassa fever patients are medically managed in order to prevent deafness by including diagnostic monitoring of human survivors for onset of vasculitides via available imaging methods and/or other diagnostic markers of immune-mediated vascular disease.Lassa virus (LASV) causes a severe, often fatal hemorrhagic disease in regions in Africa where the disease is endemic, and approximately 30% of patients develop sudden-onset sensorineural hearing loss after recovering from acute disease. The causal mechanism of hearing loss in LASV-infected patients remains elusive. Here, we report findings after closely examining the chronic disease experienced by surviving macaques assigned to LASV exposure control groups in two different studies. All nonhuman primates (NHPs) developed typical signs and symptoms of Lassa fever, and seven succumbed during the acute phase of disease. Three NHPs survived beyond the acute phase and became chronically ill but survived to the study endpoint, 45 days postexposure. All three of these survivors displayed continuous disease symptoms, and apparent hearing loss was observed using daily subjective measurements, including response to auditory stimulation and tuning fork tests. Objective measurements of profound unilateral or bilateral sensorineural hearing loss were confirmed for two of the survivors by brainstem auditory evoked response (BAER) analysis. Histologic examination of inner ear structures and other tissues revealed the presence of severe vascular lesions consistent with systemic vasculitides. These systemic immune-mediated vascular disorders have been associated with sudden hearing loss. Other vascular-specific damage was also observed to be present in many of the sampled tissues, and we were able to identify persistent virus in the perivascular tissues in the brain tissue of survivors. Serological analyses of two of the three survivors revealed the presence of autoimmune disease markers. Our findings point toward an immune-mediated etiology for Lassa fever-associated sudden-onset hearing loss and lay the foundation for developing potential therapies to prevent and/or cure Lassa fever-associated sudden-onset hearing loss

    UK B.1.1.7 variant exhibits increased respiratory replication and shedding in nonhuman primates.

    No full text
    The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, African green monkeys were infected intranasally with either a contemporary D614G or the UK B.1.1.7 variant. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tract tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases. ONE-SENTENCE SUMMARY: UK B.1.1.7 infection of African green monkeys exhibits increased respiratory replication and shedding but no disease enhancement

    A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever

    No full text
    Lassa virus (LASV) is an ambisense RNA virus in the Arenaviridae family and is the etiological agent of Lassa fever, a severe hemorrhagic disease endemic to West and Central Africa. There are no US Food and Drug Administration (FDA)-licensed vaccines available to prevent Lassa fever. in our previous studies, we developed a gene-optimized DNA vaccine that encodes the glycoprotein precursor gene of LASV (Josiah strain) and demonstrated that 3 vaccinations accompanied by dermal electroporation protected guinea pigs from LASV-associated illness and death. Here, we describe an initial efficacy experiment in cynomolgus macaque nonhuman primates (NHPs) in which we followed an identical 3-dose vaccine schedule that was successful in guinea pigs, and a follow-on experiment in which we used an accelerated vaccination strategy consisting of 2 administrations, spaced 4 weeks apart. In both studies, all of the LASV DNA-vaccinated NHPs survived challenge and none of them had measureable, sustained viremia or displayed weight loss or other disease signs post-exposure. Three of 10 mock-vaccinates survived exposure to LASV, but all of them became acutely ill post-exposure and remained chronically ill to the study end point (45 d post-exposure). Two of the 3 survivors experienced sensorineural hearing loss (described elsewhere). These results clearly demonstrate that the LASV DNA vaccine combined with dermal electroporation is a highly effective candidate for eventual use in humans
    corecore