17 research outputs found

    Pediatric malignancies presenting as a possible infectious disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical, laboratory, and radiological features of malignancy can overlap with those of infection. The purpose of this study was to determine the findings in children who were initially thought to have an infectious disease but ultimately proved to have a malignancy.</p> <p>Methods</p> <p>The database of patients diagnosed with a malignancy in the Northern Alberta Children's Cancer Program (NACCP) January 1, 1993 to December 31, 2003 was merged with the database of inpatients referred to the infectious diseases service at the Stollery Children's Hospital and charts were reviewed on all patients referred to the infectious diseases consult service prior to the diagnosis of malignancy.</p> <p>Results</p> <p>An infectious diseases consultation for diagnosis was requested in 21 of 561 patients prior to the confirmation of malignancy, and 3 of these 21 patients had both infection and malignancy (leukemia (N = 13), lymphoma (N = 3), rhabdomyosarcoma (N = 1), Langerhan's cell histiocytosis (N = 1), fibrous histicocytosis (N = 1), ependymoma (N = 1), and neuroblastoma (N = 1). The most common reason for infectious diseases consultation was suspected muskuloskeletal infection (N = 9). A palpable or radiographically enlarged spleen was noted in 11 patients (52%). All but 2 patients had abnormal hematologic parameters while an elevated lactate dehydrogenase (LDH) occurred in 10 patients (48%). Delay of diagnosis because of investigation or therapy for an infectious disease occurred in only 2 patients.</p> <p>Conclusion</p> <p>It is not common for treatment of pediatric malignancies to be delayed because infection is thought to be the primary diagnosis. However, pediatric infectious diseases physicians should consider malignancy in the differential diagnosis when they see patients with fever and bone pain, unexplained splenomegaly or abnormal complete blood cell counts. Other clues may include hepatomegaly or elevated LDH.</p

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)

    Independent Effects of HIV and Antiretroviral Therapy on the Oral Microbiome Identified by Multivariate Analyses

    No full text
    ABSTRACT The oral microbiome is an important predictor of health and disease. We recently reported significant yet modest effects of HIV under highly active antiretroviral therapy (ART) on the oral microbiome (bacterial and fungal) in a large cohort of HIV-positive (HIV+) and matched HIV-negative (HIV−) individuals. As it was unclear whether ART added to or masked further effects of HIV on the oral microbiome, the present study aimed to analyze the effects of HIV and ART independently, which also included HIV− subjects on preexposure prophylaxis (PrEP) therapy. Cross-sectional analyses of the effect of HIV devoid of ART (HIV+ ART− versus matched HIV− subjects) showed a significant effect on both the bacteriome and mycobiome (P < 0.024) after controlling for other clinical variables (permutational multivariate analysis of variance [PERMANOVA] of Bray-Curtis dissimilarity). Cross-sectional analyses evaluating the effects of ART (HIV+ ART+ versus HIV+ ART− subjects) revealed a significant effect on the mycobiome (P < 0.007) but not the bacteriome. In parallel longitudinal analyses, ART (before versus after the initiation of ART) had a significant effect on the bacteriome, but not the mycobiome, of HIV+ and HIV− PrEP subjects (P < 0.005 and P < 0.016, respectively). These analyses also revealed significant differences in the oral microbiome and several clinical variables between HIV− PrEP subjects (pre-PrEP) and the HIV-matched HIV− group (P < 0.001). At the species level, a small number of differences in both bacterial and fungal taxa were identified within the effects of HIV and/or ART. We conclude that the effects of HIV and ART on the oral microbiome are similar to those of the clinical variables but collectively are modest overall. IMPORTANCE The oral microbiome can be an important predictor of health and disease. For persons living with HIV (PLWH), HIV and highly active antiretroviral therapy (ART) may have a significant influence on their oral microbiome. We previously reported a significant effect of HIV with ART on both the bacteriome and mycobiome. It was unclear whether ART added to or masked further effects of HIV on the oral microbiome. Hence, it was important to evaluate the effects of HIV and ART independently. For this, multivariate cross-sectional and longitudinal oral microbiome analyses (bacteriome and mycobiome) were conducted within the cohort, including HIV+ ART+ subjects and HIV+ and HIV− (preexposure prophylaxis [PrEP]) subjects before and after the initiation of ART. While we report independent significant effects of HIV and ART on the oral microbiome, we conclude that their influence is similar to that of the clinical variables but collectively modest overall

    Mlp1 Acts as a Mitotic Scaffold to Spatially Regulate Spindle Assembly Checkpoint Proteins in Aspergillus nidulans

    No full text
    During open mitosis several nuclear pore complex (NPC) proteins have mitotic specific localizations and functions. We find that the Aspergillus nidulans Mlp1 NPC protein has previously unrealized mitotic roles involving spatial regulation of spindle assembly checkpoint (SAC) proteins. In interphase, An-Mlp1 tethers the An-Mad1 and An-Mad2 SAC proteins to NPCs. During a normal mitosis, An-Mlp1, An-Mad1, and An-Mad2 localize similarly on, and around, kinetochores until telophase when they transiently localize near the spindle but not at kinetochores. During SAC activation, An-Mlp1 remains associated with kinetochores in a manner similar to An-Mad1 and An-Mad2. Although An-Mlp1 is not required for An-Mad1 kinetochore localization during early mitosis, it is essential to maintain An-Mad1 in the extended region around kinetochores in early mitosis and near the spindle in telophase. Our data are consistent with An-Mlp1 being part of a mitotic spindle matrix similar to its Drosophila orthologue and demonstrate that this matrix localizes SAC proteins. By maintaining SAC proteins near the mitotic apparatus, An-Mlp1 may help monitor mitotic progression and coordinate efficient mitotic exit. Consistent with this possibility, An-Mad1 and An-Mlp1 redistribute from the telophase matrix and associate with segregated kinetochores when mitotic exit is prevented by expression of nondegradable cyclin B
    corecore