30 research outputs found

    Fragment-Based Identification of Ligands for Bromodomain-Containing Factor 3 of Trypanosoma cruzi

    No full text
    The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1–5 (TcBDF1–5). However, little is known about the function of the TcBDF1–5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi

    KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage

    Get PDF
    The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation

    BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability

    No full text
    Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½ = 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½ = 388 min)

    BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability

    Get PDF
    Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½ = 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½ = 388 min)
    corecore