8 research outputs found

    Microglia and Microglia-Like Cell Differentiated from DC Inhibit CD4 T Cell Proliferation

    Get PDF
    The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function

    The role of microglia in human disease: therapeutic tool or target?

    Get PDF

    Isolierung und Charakterisierung biologisch aktiver mariner Substanzen Gemeinsamer Abschlussbericht

    No full text
    Available from TIB Hannover: F03B1050 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung, Berlin (Germany)DEGerman

    Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis

    No full text
    Axonal degeneration is a major cause of permanent disability in the inflammatory demyelinating disease multiple sclerosis, but no therapies are known to be effective in axonal protection. Sodium channel blocking agents can provide effective protection of axons in the white matter in experimental models of multiple sclerosis, but the mechanism of action (directly on axons or indirectly via immune modulation) remains uncertain. Here we have examined the efficacy of two sodium channel blocking agents to protect white matter axons in two forms of experimental autoimmune encephalomyelitis, a common model of multiple sclerosis. Safinamide is currently in phase III development for use in Parkinson’s disease based on its inhibition of monoamine oxidase B, but the drug is also a potent state-dependent inhibitor of sodium channels. Safinamide provided significant protection against neurological deficit and axonal degeneration in experimental autoimmune encephalomyelitis, even when administration was delayed until after the onset of neurological deficit. Protection of axons was associated with a significant reduction in the activation of microglia/macrophages within the central nervous system. To clarify which property of safinamide was likely to be involved in the suppression of the innate immune cells, the action of safinamide on microglia/macrophages was compared with that of the classical sodium channel blocking agent, flecainide, which has no recognized monoamine oxidase B activity, and which has previously been shown to protect the white matter in experimental autoimmune encephalomyelitis. Flecainide was also potent in suppressing microglial activation in experimental autoimmune encephalomyelitis. To distinguish whether the suppression of microglia was an indirect consequence of the reduction in axonal damage, or possibly instrumental in the axonal protection, the action of safinamide was examined in separate experiments in vitro. In cultured primary rat microglial cells activated by lipopolysaccharide, safinamide potently suppressed microglial superoxide production and enhanced the production of the anti-oxidant glutathione. The findings show that safinamide is effective in protecting axons from degeneration in experimental autoimmune encephalomyelitis, and that this effect is likely to involve a direct effect on microglia that can result in a less activated phenotype. Together, this work highlights the potential of safinamide as an effective neuroprotective agent in multiple sclerosis, and implicates microglia in the protective mechanism

    Immunotherapy of High-Grade Gliomas: Preclinical In Vivo Experiments in Animal Models

    No full text
    corecore