463 research outputs found

    Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study

    Get PDF
    In order to gain insights into the origin of colossal magneto-resistance (CMR) in manganese oxides, we performed a ^{139}La NMR study in the double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie temperature T_C=126 K, applying a magnetic field induces a long-range ferromagnetic order that persists up to T=330 K. The critical field at which the induced magnetic moment is saturated coincides with the field at which the CMR effect reaches to a maximum. Our results therefore indicate that the CMR observed above T_C in this compound is due to the field-induced ferromagnetism that produces a metallic state via the double exchange interaction

    First order valence transition in YbInCu_4 in the (B,T) - plane

    Full text link
    The puzzling properties of the first order phase transition in YbInCu4_4 and its alloys in the wide range of magnetic fields and temperatures are perfectly described in terms of a simple entropy transition for free Yb ions. In particular, it turns out that the transition line in the (B,T)(B,T)-plane is very close to the elliptic shape, as it has been observed experimentally. Similar calculations are done, and the experiments are proposed for the (γ−α)(\gamma{-}\alpha) phase transition in Ce in Megagauss fields. We speculate, that in case of YbInCu4_4 the first order transition is a Mott transition between a higher temperature phase in which localized moments are stabilized by the entropy terms in the free energy, and a band-like non-magnetic ground state of the ff-electrons.Comment: RevTeX, 5 pages, 2 figure

    Magnetotransport in the CeIrIn5{_5} system: The influence of antiferromagnetic fluctuations

    Get PDF
    We present an overview of magnetotransport measurements on the heavy-fermion superconductor CeIrIn5_5. Sensitive measurements of the Hall effect and magnetoresistance (MR) are used to elucidate the low temperature phase diagram of this system. The normal-state magnetotransport is highly anomalous, and experimental signatures of a pseudogap-like precursor state to superconductivity as well as evidence for two distinct scattering times governing the Hall effect and the MR are observed. Our observations point out the influence of antiferromagnetic fluctuations on the magnetotransport in this class of materials. The implications of these findings, both in the context of unconventional superconductivity in heavy-fermion systems as well as in relation to the high temperature superconducting cuprates are discussed

    Optical study of the electronic phase transition of strongly correlated YbInCu_4

    Full text link
    Infrared, visible and near-UV reflectivity measurements are used to obtain conductivity as a function of temperature and frequency in YbInCu_4, which exhibits an isostructural phase-transition into a mixed-valent phase below T_v=42 K. In addition to a gradual loss of spectral weight with decreasing temperature extending up to 1.5 eV, a sharp resonance appears at 0.25 eV in the mixed-valent phase. This feature can be described in terms of excitations into the Kondo (Abrikosov-Suhl) resonance, and, like the sudden reduction of resistivity, provides a direct reflection of the onset of coherence in this strongly correlated electron system.Comment: 4 pages, 3 figures (to appear in Phys. Rev. B
    • …
    corecore