18 research outputs found

    Ecological genetics of inbreeding, outbreeding and immunocompetence in Ranid frogs

    Get PDF
    Using artificial fertilization, I crossed frogs from different populations to evaluate fitness consequences for the offspring from an inbreeding-outbreeding perspective, and to evaluate quantitative genetic effects on immunocompetence against a fungal pathogen (Saprolegnia). Crosses between closely situated populations of different sizes generated contrasting results for the effects of outbreeding on offspring traits between populations and life history stages, emphasizing the importance of epistatic effects and the difficulties of relying on generalizations when making conservation decisions (e.g., regarding translocations). Experimental infection of frog eggs from six populations with Saprolegnia fungus showed a significant family effect on the degree of infection of eggs and embryos, in particular at lower fertilization success and with a significant temperature × population interaction effect. A paternal genetic effect on fungus resistance was found using a half-sib split design. Furthermore, relatively more eggs were infected when fertilized by sperm from the same, in contrast with a different population. However, there was no evidence for a stronger effect in isolated island populations. Although the mechanistic underpinnings remain unknown, these results suggest substantial levels of genetic variation in resistance to Saprolegnia in natural populations within and among populations. We also found that pre-hatching exposure to Saprolegnia dramatically reduced the size at metamorphosis in the absence of further exposure to the fungus, possible as a delayed effect of impaired embryonic development. However, in contrast to some other amphibians, induced hatching in response to Saprolegnia could not be confirmed. In conclusion, the results suggest that frog populations are genetically diverse even at small geographic scale with frequently strong and unpredictable consequences of in- and outbreeding for the response to stressors

    Crosses between frog populations reveal genetic divergence in larval life history at short geographical distance

    No full text
    A number of studies have documented interpopulation divergence in amphibian larval life-history traits across latitudes. Because many frogs are philopatric and have a patchy habitat distribution, genetic divergence could also exist on a much smaller geographical scale, revealed by recent estimates of population divergence using molecular markers. Whether this divergence is reflected in phenotypic traits is virtually unknown. Using artificial fertilization, individuals of the common frog, Rana temporaria, were crossed from two populations situated 130 km apart and differing in population size. The pattern of size at metamorphosis showed evidence of non-additive effects, as demonstrated by a significant interaction between male and female population of origin. Outbreeding resulted in an increase in metamorph size when eggs from the small population were fertilized with sperm from the large population. In the reciprocal cross, however, the pattern was in the opposite direction, with no significant effect of male population of origin. Genetic divergence of populations separated by a relatively short geographical distance may be more common in frogs than previously acknowledged, with potential implications for conservation of declining amphibian species. © 2006 The Linnean Society of London

    Pre-hatching exposure to water mold reduces size at metamorphosis in the moor frog.

    No full text
    Developmental plasticity is increasingly recognized as important for ecological and evolutionary processes. However, few studies consider the potential for delayed effects of early environments. Here, we show that tadpoles hatching from clutches exposed to water mold (Saprolegnia) have 20% decreased mass at metamorphosis, despite no further exposure subsequent to hatching. The effects were consistent across four populations that have previously been shown to vary in their resistance to infection during embryonic development. Contrary to expectations, time to hatching or metamorphosis was not affected, suggesting that the results do not reflect an evolved escape strategy from infected waters triggered by embryonic conditions. Instead, decreased mass at metamorphosis may arise from carry-over effects of impaired embryo development. Such strong links across developmental stages have potential consequences for the evolution of plasticity and the responses of populations to emergent infections

    Intraspecific variation in resistance of frog eggs to fungal infection

    No full text
    Documenting sources of variation in host viability at pathogen exposure within and among populations is an important task in order to predict host-pathogen evolutionary dynamics. In the present study, we investigated family and population variation in the degree of embryonic infection of the pathogenic fungus Saprolegnia spp., by infecting moor frog (Rana arvalis) eggs from six populations and exposing them to two different temperatures. We found a significant family effect on the degree of Saprolegnia-infection of eggs and embryos, suggesting that there is genetic variation in resistance among embryos, or variation among females in some aspect of maternally induced resistance. Furthermore, infection level differed significantly between temperatures, with most families having more infected eggs in the relatively colder temperature. However, eggs and embryos from the different populations showed different degrees of Saprolegnia-infection in the two temperatures, i.e., there was a significant population × temperature interaction on the proportion of infected eggs. Thus, the degree of Saprolegnia-infection is sensitive to variation at the level of the family, population and environmental conditions, suggesting that responses to fungal outbreaks will vary geographically and will be difficult to predict. © 2007 Springer Science+Business Media, Inc

    Beyond the point of no return? A comparison of genetic diversity in captive and wild populations of two nearly extinct species of Goodeid fish reveals that one is inbred in the wild.

    No full text
    The relative importance of genetic and non-genetic factors in extinction liability has been extensively debated. Here, we examine the levels of genetic variability at 13 (seven informative) loci in wild and captive populations of two endangered species of Mexican Goodeid fish, Ameca splendens and Zoogoneticus tequila. Allelic diversity was higher in the wild populations, and F-IS lower. Values of theta (= 4Ne mu) were estimated using a coalescent approach. These implied that the effective population size of all captive populations of A. splendens were smaller than that of the wild population; qualitatively similar results were obtained using an analytical method based on within-population gene identity disequilibrium. However, the wild population of Z. tequila did not show a significantly greater estimate of theta. We used the Beaumont approach to infer population declines, and found that both species showed clear evidence of a decline in effective population size, although this was stronger and probably occurred over a longer period of time in Z. tequila than in A. splendens. The decline in Z. tequila probably occurred before captive populations were established. We discuss implications for the conservation of critically endangered populations.</p

    Within-population variation in ejaculate characteristics in a prolonged breeder, Peron\u27s tree frog, Litoria peronii

    Full text link
    Sperm number is often a good predictor of success in sperm competition; however, it has become increasingly clear that, for some species, variation in probability of paternity cannot be explained by sperm number alone. Intraspecific variation in ejaculate characteristics, such as the number of viable sperm and sperm longevity, may play an equally important role in determining fertilization success. Here, we assess variation among ejaculates in three factors that may contribute to fertilization success (number of sperm per ejaculate, viability, and longevity), in a population of Peron&rsquo;s tree frog (Litoria peronii). We detected large variation among males in the number of sperm per ejaculate and the proportion of viable sperm within ejaculates, which could not be explained by variation in either male size or body condition. However, the proportion of viable sperm released by males increased over the season. Finally, we assessed sperm longevity (proportion viable sperm determined using a dual-fluorochrome vital dye) at two different temperatures. At 23&deg;C, on average, 75% of sperm remained viable after 2 h, but there were significant differences amongst males with the percentage of viable sperm ranging from 43% to 95%. For sperm incubated at 4&deg;C, ejaculates varied fivefold in sperm longevity with some males having 50% viable sperm after 5 days. Our data suggest that ejaculate characteristics (sperm number, viability, and longevity) vary widely in Peron&rsquo;s tree frog and may therefore play an important role in determining siring success both in the presence and absence of sperm competition. We discuss the results in relation to selection on ejaculate traits via natural and sexual selection in this and other amphibians. <br /
    corecore