14,011 research outputs found

    Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media

    Get PDF
    We analyze frequency conversion and its control among three light waves using a geometric approach that enables the dynamics of the waves to be visualized on a closed surface in three dimensions. It extends the analysis based on the undepleted-pump linearization and provides a simple way to understand the fully nonlinear dynamics. The Poincaré sphere has been used in the same way to visualize polarization dynamics. A geometric understanding of control strategies that enhance energy transfer among interacting waves is introduced, and the quasi-phase-matching strategy that uses microstructured quadratic materials is illustrated in this setting for both type I and II second-harmonic generation and for parametric three-wave interactions

    Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation

    Get PDF
    Recent experiments have shown that the striking structure formation in dewetting films of evaporating colloidal nanoparticle suspensions occurs in an ultrathin `postcursor' layer that is left behind by a mesoscopic dewetting front. Various phase change and transport processes occur in the postcursor layer, that may lead to nanoparticle deposits in the form of labyrinthine, network or strongly branched `finger' structures. We develop a versatile dynamical density functional theory to model this system which captures all these structures and may be employed to investigate the influence of evaporation/condensation, nanoparticle transport and solute transport in a differentiated way. We highlight, in particular, the influence of the subtle interplay of decomposition in the layer and contact line motion on the observed particle-induced transverse instability of the dewetting front.Comment: 5 pages, 5 figure

    Geometric phases and anholonomy for a class of chaotic classical systems

    Full text link
    Berry's phase may be viewed as arising from the parallel transport of a quantal state around a loop in parameter space. In this Letter, the classical limit of this transport is obtained for a particular class of chaotic systems. It is shown that this ``classical parallel transport'' is anholonomic --- transport around a closed curve in parameter space does not bring a point in phase space back to itself --- and is intimately related to the Robbins-Berry classical two-form.Comment: Revtex, 11 pages, no figures

    A comparison of approaches for investigating the impact of ambient light on road traffic collisions

    Get PDF
    A recent paper proposed a more precise approach for investigating the impact of ambient light (daylight versus after dark) on road traffic collisions. The present paper first repeated that analysis of road traffic collisions in the UK to test reproducibility; it then extended the analysis to determine whether the greater precision affected the outcome of road traffic collision analyses. Results of the previous analysis were reproduced in terms of the direction of the effect, but the repeated analysis found greater differences between daylight and darkness. The odds ratio determined using the new method led to higher odds ratios than the analyses used in some past studies, suggesting that past studies may have underestimated the detrimental effect of darkness on road traffic collision risk

    Impact Ionization in ZnS

    Full text link
    The impact ionization rate and its orientation dependence in k space is calculated for ZnS. The numerical results indicate a strong correlation to the band structure. The use of a q-dependent screening function for the Coulomb interaction between conduction and valence electrons is found to be essential. A simple fit formula is presented for easy calculation of the energy dependent transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for publication in PRB as brief Report (LaTeX source replaces raw-postscript file

    Toward the End of Time

    Full text link
    The null-brane space-time provides a simple model of a big crunch/big bang singularity. A non-perturbative definition of M-theory on this space-time was recently provided using matrix theory. We derive the fermion couplings for this matrix model and study the leading quantum effects. These effects include particle production and a time-dependent potential. Our results suggest that as the null-brane develops a big crunch singularity, the usual notion of space-time is replaced by an interacting gluon phase. This gluon phase appears to constitute the end of our conventional picture of space and time.Comment: 31 pages, reference adde

    Melting-freezing cycles in a relatively sheared pair of crystalline monolayers

    Get PDF
    The nonequilibrium dynamical behaviour that arises when two ordered two-dimensional monolayers of particles are sheared over each other is studied in Brownian dynamics simulations. A curious sequence of nonequilibrium states is observed as the driving rate is increased, the most striking of which is a sliding state with irregular alternation between disordered and ordered states. We comment on possible mechanisms underlying these cycles, and experiments that could observe them.Comment: 7 pages, 8 figures, minor changes in text and figures, references adde
    corecore