21,027 research outputs found

    Cavity field ensembles from nonselective measurements

    Full text link
    We continue our investigations of cavity QED with time dependent parameters. In this paper we discuss the situation where the state of the atoms leaving the cavity is reduced but the outcome is not recorded. In this case our knowledge is limited to an ensemble description of the results only. By applying the Demkov-Kunike level-crossing model, we show that even in this case, the filtering action of the interaction allows us to prepare a preassigned Fock state with good accuracy. The possibilities and limitations of the method are discussed and some relations to earlier work are presented.Comment: 11 pages, 2 figure

    Photon filters in a microwave cavity

    Full text link
    In an earlier paper we have concluded that time-dependent parameters in atom-mode interaction can be utilized to modify the quantum field in a cavity. When an atom shoots through the cavity field, it is expected to experience a trigonometric time dependence of its coupling constant. We investigate the possibilities this offers to modify the field. As a point of comparison we use the solvable Rosen-Zener model, which has parameter dependencies roughly similar to the ones expected in a real cavity. We do confirm that by repeatedly sending atoms through the cavity, we can obtain filters on the photon states. Highly non-classical states can be obtained. We find that the Rosen-Zener model is more sensitive to the detuning than the case of a trigonometric coupling.Comment: 9 pages, 5 figure

    Validity of adiabaticity in Cavity QED

    Full text link
    This paper deals with the concept of adiabaticity for fully quantum mechanically cavity QED models. The physically interesting cases of Gaussian and standing wave shapes of the cavity mode are considered. An analytical approximate measure for adiabaticity is given and compared with numerical wave packet simulations. Good agreement is obtained where the approximations are expected to be valid. Usually for cavity QED systems, the large atom-field detuning case is considered as the adiabatic limit. We, however, show that adiabaticity is also valid, for the Gaussian mode shape, in the opposite limit. Effective semiclassical time dependent models, which do not take into account the shape of the wave packet, are derived. Corrections to such an effective theory, which are purely quantum mechanical, are discussed. It is shown that many of the results presented can be applied to time dependent two-level systems.Comment: 10 pages, 9 figure

    Mean velocity, turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel

    Get PDF
    The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity

    Dynamical quantum phase transition of a two-component Bose-Einstein condensate in an optical lattice

    Full text link
    We study dynamics of a two-component Bose-Einstein condensate where the two components are coupled via an optical lattice. In particular, we focus on the dynamics as one drives the system through a critical point of a first order phase transition characterized by a jump in the internal populations. Solving the time-dependent Gross-Pitaevskii equation, we analyze; breakdown of adiabaticity, impact of non-linear atom-atom scattering, and the role of a harmonic trapping potential. Our findings demonstrate that the phase transition is resilient to both contact interaction between atoms and external trapping confinement.Comment: 8 pages, 8 figure

    Thermal and hydrodynamic effects in the ordering of lamellar fluids

    Full text link
    Phase separation in a complex fluid with lamellar order has been studied in the case of cold thermal fronts propagating diffusively from external walls. The velocity hydrodynamic modes are taken into account by coupling the convection-diffusion equation for the order parameter to a generalised Navier-Stokes equation. The dynamical equations are simulated by implementing a hybrid method based on a lattice Boltzmann algorithm coupled to finite difference schemes. Simulations show that the ordering process occurs with morphologies depending on the speed of the thermal fronts or, equivalently, on the value of the thermal conductivity {\xi}. At large value of {\xi}, as in instantaneous quenching, the system is frozen in entangled configurations at high viscosity while consists of grains with well ordered lamellae at low viscosity. By decreasing the value of {\xi}, a regime with very ordered lamellae parallel to the thermal fronts is found. At very low values of {\xi} the preferred orientation is perpendicular to the walls in d = 2, while perpendicular order is lost moving far from the walls in d = 3.Comment: 8 pages, 3 figures. Accepted for publication in Phil. Trans. of Royal Soc, Ser

    Air data position-error calibration using state reconstruction techniques

    Get PDF
    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors

    Gravitational Radiation from Black Hole Binaries in Globular Clusters

    Get PDF
    A populations of stellar mass black hole binaries may exist in globular clusters. The dynamics of globular cluster evolution imply that there may be at most one black hole binary is a globular cluster. The population of binaries are expected to have orbital periods greater than a few hours and to have a thermal distribution of eccentricities. In the LISA band, the gravitational wave signal from these binaries will consist of several of the higher harmonics of the orbital frequency. A Monte Carlo simulation of the galactic globular cluster system indicates that LISA will detect binaries in 10 % of the clusters with an angular resolution sufficient to identify the host cluster of the binary.Comment: 7 pages, 2 eps figures, uses iopart styl

    Duality in Shearing Rheology Near the Athermal Jamming Transition

    Full text link
    We consider the rheology of soft-core frictionless disks in two dimensions in the neighborhood of the athermal jamming transition. From numerical simulations of bidisperse, overdamped, particles, we argue that the divergence of the viscosity below jamming is characteristic of the hard-core limit, independent of the particular soft-core interaction. We develop a mapping from soft-core to hard-core particles that recovers all the critical behavior found in earlier scaling analyses. Using this mapping we derive a duality relation that gives the exponent of the non-linear Herschel-Bulkley rheology above jamming in terms of the exponent of the diverging viscosity below jamming.Comment: 5 pages, 4 figures. Manuscript revisions: new title, additional text concerning connections to experiment, revised Fig. 4, other minor changes and clarifications in text. Conclusions remain essentially unchanged. Accepted for publication in Phys. Rev. Let
    • …
    corecore