5,610 research outputs found

    Artificial neural network prediction of weld distortion rectification using a travelling induction coil

    Get PDF
    An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes

    Rayleigh scattering, mode coupling, and optical loss in silicon microdisks

    Get PDF
    High refractive index contrast optical microdisk resonators fabricated from silicon-on-insulator wafers are studied using an external silica fiber taper waveguide as a wafer-scale optical probe. Measurements performed in the 1500 nm wavelength band show that these silicon microdisks can support whispering-gallery modes with quality factors as high as 5.2 x 10^5, limited by Rayleigh scattering from fabrication induced surface roughness. Microdisks with radii as small as 2.5 microns are studied, with measured quality factors as high as 4.7 x 10^5 for an optical mode volume of 5.3 cubic wavelengths in the material.Comment: 4 pages, 2 figures; contains minor correction to doublet splitting theor

    An interdisciplinary approach to volcanic risk reduction under conditions of uncertainty: a case study of Tristan da Cunha

    Get PDF
    The uncertainty brought about by intermittent volcanic activity is fairly common at volcanoes worldwide. While better knowledge of any one volcano's behavioural characteristics has the potential to reduce this uncertainty, the subsequent reduction of risk from volcanic threats is only realised if that knowledge is pertinent to stakeholders and effectively communicated to inform good decision making. Success requires integration of methods, skills and expertise across disciplinary boundaries. This research project develops and trials a novel interdisciplinary approach to volcanic risk reduction on the remote volcanic island of Tristan da Cunha (South Atlantic). For the first time, volcanological techniques, probabilistic decision support and social scientific methods were integrated in a single study. New data were produced that (1) established no spatio-temporal pattern to recent volcanic activity; (2) quantified the high degree of scientific uncertainty around future eruptive scenarios; (3) analysed the physical vulnerability of the community as a consequence of their geographical isolation and exposure to volcanic hazards; (4) evaluated social and cultural influences on vulnerability and resilience; and (5) evaluated the effectiveness of a scenario planning approach, both as a method for integrating the different strands of the research and as a way of enabling on-island decision makers to take ownership of risk identification and management, and capacity building within their community. The paper provides empirical evidence of the value of an innovative interdisciplinary framework for reducing volcanic risk. It also provides evidence for the strength that comes from integrating social and physical sciences with the development of effective, tailored engagement and communication strategies in volcanic risk reduction

    Understanding non-vaccinating parents' views to inform and improve clinical encounters: A qualitative study in an Australian community

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. Objectives To explain vaccination refusal in a sample of Australian parents. Design Qualitative design, purposive sampling in a defined population. Setting A geographically bounded community of approximately 30 000 people in regional Australia with high prevalence of vaccination refusal. Participants Semi structured interviews with 32 non-vaccinating parents: 9 fathers, 22 mothers and 1 pregnant woman. Purposive sampling of parents who had decided to discontinue or decline all vaccinations for their children. Recruitment via local advertising then snowballing. Results Thematic analysis focused on explaining decision-making pathways of parents who refuse vaccination. Common patterns in parents' accounts included: perceived deterioration in health in Western societies; a personal experience introducing doubt about vaccine safety; concerns regarding consent; varied encounters with health professionals (dismissive, hindering and helpful); a quest for the real truth'; reactance to system inflexibilities and ongoing risk assessment. Conclusions We suggest responses tailored to the perspectives of non-vaccinating parents to assist professionals in understanding and maintaining empathic clinical relationships with this important patient group

    Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion

    Get PDF
    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern’ G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages

    Feasibility of detecting single atoms using photonic bandgap cavities

    Get PDF
    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped atoms into the mode of the PBG cavity.Comment: 11 pages, 5 figure

    Quantum Optics with Surface Plasmons

    Get PDF
    We describe a technique that enables strong, coherent coupling between individual optical emitters and guided plasmon excitations in conducting nano-structures at optical frequencies. We show that under realistic conditions, optical emission can be almost entirely directed into the plasmon modes. As an example, we describe an application of this technique involving efficient generation of single photons on demand, in which the plasmon is efficiently out-coupled to a dielectric waveguide.Comment: 11 pages, 3 figure
    corecore