84 research outputs found

    Regulation of vascular smooth muscle cell differentiation

    Get PDF
    Vascular smooth muscle cell (VSMC) differentiation is an essential component of vascular development. These cells perform biosynthetic, proliferative, and contractile roles in the vessel wall. VSMCs are not terminally differentiated and are able to modulate their phenotype in response to changing local environmental cues. There is clear evidence that alterations in the differentiated state of the VSMC play a critical role in the pathogenesis of atherosclerosis and intimal hyperplasia, as well as in a variety of other major human diseases, including hypertension, asthma, and vascular aneurysms. The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms involved in controlling phenotypic switching of SMCs, with particular focus on examination of signaling pathway that regulate this process

    Long-term results of open and endovascular revascularization of superficial femoral artery occlusive disease

    Get PDF
    BackgroundFirst-line treatment for patients with superficial femoral arterial (SFA) occlusive disease has yet to be determined. This study compared long-term outcomes between primary SFA stent placement and primary femoral-popliteal bypass. Periprocedural patient factors were examined to determine their effect on these results.MethodsAll femoral-popliteal bypasses and SFA interventions performed in consecutive patients with symptoms Rutherford 3 to 6 between 2001 and 2008 were reviewed. Time-dependent outcomes were analyzed using the Kaplan-Meier method and log-rank test. Cox proportional hazards were performed to determine predictors of graft patency. Multivariate analysis was completed to identify patient covariates most often associated with the primary therapy.ResultsA total of 152 limbs in 141 patients (66% male; mean age, 66 ± 22 years) underwent femoral-popliteal bypass, and 233 limbs in 204 patients (49% male; mean age, 70 ± 11 years) underwent SFA interventions. Four-year primary, primary-assisted, and secondary patency rates were 69%, 78%, and 83%, respectively, for bypass patients and 66%, 91%, and 95%, respectively, for SFA interventions. Six-year limb salvage was 80% for bypass vs 92% for stenting (P = .04). Critical limb ischemia (CLI) and renal insufficiency were predictors of bypass failure. Claudication was a predictor of success for SFA stenting. Three-year limb salvage rates for CLI patients undergoing surgery and SFA stenting were 83%. Amputation-free survival at 3 years for CLI patients was 55% for bypass and 59% for SFA interventions. Multivariate predictors (odds ratios and 95% confidence intervals) of covariates most frequently associated with first-line SFA stenting were TransAtlantic Inter-Society Consensus II A and B lesions (5.9 [3.4-9.1], P < .001), age >70 years (2.1 [1.4-3.1], P < .001), and claudication (1.7 [1.1-2.7], P = .01). Regarding bypass as first-line therapy, claudicant patients were more likely to have nondiabetic status (5.6 [3.3-9.4], P < .001), creatinine <1.8 mg/dL (4.6 [1.5-14.9], P = .01), age <70 years (2.7 [CI, 1.6-8.3], P < .001), and presence of an above-knee popliteal artery target vessel (1.9 [CI, 1.1-3.4] P = .02).ConclusionIndication, patient-specific covariates, and anatomic lesion classification have significant association when determining surgeon selection of SFA stenting or femoral-popliteal bypass as first-line therapy. Patients with SFA disease can have comparable long-term results when treatment options are well matched to patient-specific and anatomic characteristics

    Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction

    Get PDF
    While matrix remodeling plays a key role in vascular physiology and pathology, the underlying mechanisms have remained incompletely understood. We studied the remodeling of collagen matrices by individual vascular smooth muscle cells (SMCs), clusters and monolayers. In addition, we focused on the contribution of transglutaminase 2 (TG2), which plays an important role in the remodeling of small arteries. Single SMCs displaced fibers in collagen matrices at distances up to at least 300 μm in the course of 8–12 h. This process involved both ‘hauling up’ of matrix by the cells and local matrix compaction at a distance from the cells, up to 200 μm. This exceeded the distance over which cellular protrusions were active, implicating the involvement of secreted enzymes such as TG2. SMC isolated from TG2 KO mice still showed compaction, with changed dynamics and relaxation. The TG active site inhibitor L682777 blocked local compaction by wild type cells, strongly reducing the displacement of matrix towards the cells. At increasing cell density, cells cooperated to establish compaction. In a ring-shaped collagen matrix, this resulted in preferential displacement in the radial direction, perpendicular to the cellular long axis. This process was unaffected by inhibition of TG2 cross-linking. These results show that SMCs are capable of matrix remodeling by prolonged, gradual compaction along their short axis. This process could add to the 3D organization and remodeling of blood vessels based on the orientation and contraction of SMCs

    Developmental changes in mesenteric artery reactivity in embryonic and newly hatched chicks

    Get PDF
    At birth, the intestine becomes the sole site for nutrient absorption requiring a dramatic increase in blood flow. The vascular changes accompanying this transition have been partly characterized in mammals. We investigated, using wire myography, the developmental changes in chick mesenteric artery (MA) reactivity. Rings of the MA from 15-day (E15) and 19-day (E19) chicken embryos (total incubation 21 days) as well as non-fed 0–3-h-old (NH3h) and first-fed 1-day-old (NH1d) newly hatched chicks contracted in response to KCl, norepinephrine (NE), U46619, and endothelin (ET)-1 and relaxed in response to acetylcholine (ACh), sodium nitroprusside (SNP), and forskolin indicating the presence of electro- and pharmaco-mechanical coupling as well as cGMP- and cAMP-mediated relaxation. In ovo development and transition to ex ovo life was accompanied by alterations in the response of the MAs, but a different developmental trajectory was observed for each reactivity pathway tested. Thus, the contractile efficacy of KCl underwent a linear increase (E15 < E19 < NH3h < NH1d). The efficacy of NE and U46619 increased in ovo, but not ex ovo (E15 < E19 = NH3h = NH1d) and the efficacy of ET-1 peaked at E19 (E15 < E19 > NH3h = NH1d). The relaxations elicited by ACh (endothelium-dependent), SNP, and forskolin did not undergo significant developmental changes. In conclusion, the ability of chick MAs to constrict in response to pharmacological stimuli increases during the embryonic period, but no dramatic changes are induced by hatching or the first feeding. Maturation of vasodilator mechanisms precedes that of vasoconstrictor mechanisms. Alterations of the delicate balance between vasoconstrictors and vasodilators may play an important role in perinatal intestinal diseases

    O2 Level Controls Hematopoietic Circulating Progenitor Cells Differentiation into Endothelial or Smooth Muscle Cells

    Get PDF
    BACKGROUND:Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth muscle cells (SMCs) while keeping exactly the same culture medium. METHODOLOGY/PRINCIPAL FINDINGS:Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O2) or normoxic (21% O2) environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3(rd) passage) in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs) signature of phenotype stability. CONCLUSION/SIGNIFICANCE:We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions. These aspects are of the highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue environment in the differentiation process of vascular progenitor cells

    The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic.</p> <p>Methods</p> <p>We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R<sub>0 </sub>(1.3, 1.5, 1.8) are explored.</p> <p>Results</p> <p>Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R<sub>0 </sub>= 1.5.</p> <p>Conclusions</p> <p>Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high.</p
    corecore