418 research outputs found

    Maximally-fast coarsening algorithms

    Full text link
    We present maximally-fast numerical algorithms for conserved coarsening systems that are stable and accurate with a growing natural time-step Δt=Ats2/3\Delta t=A t_s^{2/3}. For non-conserved systems, only effectively finite timesteps are accessible for similar unconditionally stable algorithms. We compare the scaling structure obtained from our maximally-fast conserved systems directly against the standard fixed-timestep Euler algorithm, and find that the error scales as A\sqrt{A} -- so arbitrary accuracy can be achieved.Comment: 5 pages, 3 postscript figures, Late

    Silence of the Spam: Improving the CAN-SPAM Act by Including an Expanded Private Cause of Action

    Get PDF
    In the last decade, email spam has become more than just an annoyance for email users. Unsolicited messages now comprise more than 95 percent of all email sent worldwide. This costs US businesses billions of dollars in lost productivity each year. The US Congress passed the CAN-SPAM Act of 2003 to regulate the spam industry. Unfortunately, data show that spam only increased since the Act\u27s passage. Part of the reason for this failure is that the Act only authorizes the Federal Trade Commission, state attorneys general, and Internet Service Providers to bring action under its provisions. Each of these authorized entities either lacks the incentive or the resources to adequately enforce the Act, resulting in little to no reduction of spam. As a result, email recipients--not spammers--bear the cost of spam. This Note argues that the Act should incorporate an expanded private cause of action for email recipients, thereby increasing the enforcement level. This will deter spam prospectively by shifting the cost of unsolicited email from the recipient onto the sender

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Scaling state of dry two-dimensional froths: universal angle deviations and structure

    Full text link
    We characterize the late-time scaling state of dry, coarsening, two-dimensional froths using a detailed, force-based vertex model. We find that the slow evolution of bubbles leads to systematic deviations from 120degree angles at three-fold vertices in the froth, with an amplitude proportional to the vertex speed, v ~ sqrt(t), but with a side-number dependence that is independent of time. We also find that a significant number of T1 side-switching processes occur for macroscopic bubbles in the scaling state, though most bubble annihilations involve four-sided bubbles at microscopic scales.Comment: 7 pages, 7 figure

    Breakdown of Scaling in the Nonequilibrium Critical Dynamics of the Two-Dimensional XY Model

    Full text link
    The approach to equilibrium, from a nonequilibrium initial state, in a system at its critical point is usually described by a scaling theory with a single growing length scale, ξ(t)t1/z\xi(t) \sim t^{1/z}, where z is the dynamic exponent that governs the equilibrium dynamics. We show that, for the 2D XY model, the rate of approach to equilibrium depends on the initial condition. In particular, ξ(t)t1/2\xi(t) \sim t^{1/2} if no free vortices are present in the initial state, while ξ(t)(t/lnt)1/2\xi(t) \sim (t/\ln t)^{1/2} if free vortices are present.Comment: 4 pages, 3 figure

    Comment on ``Theory of Spinodal Decomposition''

    Full text link
    I comment on a paper by S. B. Goryachev [PRL vol 72, p.1850 (1994)] that presents a theory of non-equilibrium dynamics for scalar systems quenched into an ordered phase. Goryachev incorrectly applies only a global conservation constraint to systems with local conservation laws.Comment: 2 pages LATeX (REVTeX macros), no figures. REVISIONS --- more to the point. microscopic example added, presentation streamlined, long-range interactions mentioned, to be published in Phys. Rev. Let

    Stress-free Spatial Anisotropy in Phase-Ordering

    Full text link
    We find spatial anisotropy in the asymptotic correlations of two-dimensional Ising models under non-equilibrium phase-ordering. Anisotropy is seen for critical and off-critical quenches and both conserved and non-conserved dynamics. We argue that spatial anisotropy is generic for scalar systems (including Potts models) with an anisotropic surface tension. Correlation functions will not be universal in these systems since anisotropy will depend on, e.g., temperature, microscopic interactions and dynamics, disorder, and frustration.Comment: 4 pages, 4 figures include

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure

    Steady-state MreB helices inside bacteria: dynamics without motors

    Full text link
    Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.Comment: 7 figures, 1 tabl
    corecore