219 research outputs found

    La ciència i la humanitat en el segle vint-i-u

    Get PDF

    Science and ethics

    Full text link

    H-Ras Nanocluster Stability Regulates the Magnitude of MAPK Signal Output

    Get PDF
    H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability

    Intercellular Transfer of Oncogenic H-Ras at the Immunological Synapse

    Get PDF
    Immune cells establish dynamic adhesive cell–cell interactions at a specific contact region, termed the immunological synapse (IS). Intriguing features of the IS are the formation of regions of plasma membrane fusion and the intercellular exchange of membrane fragments between the conjugated cells. It is not known whether upon IS formation, intact intracellular proteins can transfer from target cells to lymphocytes to allow the transmission of signals across cell boundaries. Here we show by both FACS and confocal microscopy that human lymphocytes acquire from the cells they scan the inner-membrane protein H-Ras, a G-protein vital for common lymphocyte functions and a prominent participant in human cancer. The transfer was cell contact-dependent and occurred in the context of cell-conjugate formation. Moreover, the acquisition of oncogenic H-RasG12V by natural killer (NK) and T lymphocytes had important biological functions in the adopting lymphocytes: the transferred H-RasG12V induced ERK phosphorylation, increased interferon-γ and tumor necrosis factor-α secretion, enhanced lymphocyte proliferation, and augmented NK-mediated target cell killing. Our findings reveal a novel mode of cell-to-cell communication—allowing lymphocytes to extend the confines of their own proteome—which may moreover play an important role in natural tumor immunity

    Biomedical Scientists' Perceptions of Ethical and Social Implications: Is There a Role for Research Ethics Consultation?

    Get PDF
    Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation) and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S.A total of 16 researchers were interviewed (75% response rate), 29 participated in focus groups, and 856 responded to the survey (50% response rate). Approximately half of researchers surveyed (51%) reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36%) reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi(2) p<0.001).Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general

    FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice

    Get PDF
    The Ras inhibitor S-trans-trans farnesylthiosalicylic acid (FTS) inhibits active Ras, which controls cell proliferation, differentiation, survival, and metabolism. FTS also inhibits HIF1α expression in cancer cells, leading to an energy crisis. The synthetic glucose analog 2-deoxy-D-glucose (2-DG), which inhibits glycolysis, is selectively directed to tumor cells that exhibit increased glucose consumption. The 2-DG enters tumor cells, where it competes with glucose for glycolytic enzymes. In cancer models, as well as in human phase 1 trials, 2-DG inhibits tumor growth without toxicity. We postulated that under normoxic conditions, tumor cells treated with FTS would be more sensitive than normal cells to 2-DG. We show here that combined treatment with FTS and 2-DG inhibited cancer cell proliferation additively, yet induced apoptotic cell death synergistically both in vitro and in vivo. The induced apoptosis was inferred from QVD-OPH inhibition, an increase in cleaved caspase 3, and loss of survivin. FTS and 2-DG when combined, but not separately, also induced an increase in fibrosis of the tumor tissue, chronic inflammation, and tumor shrinkage. Overall, these results suggest a possible new treatment of pancreatic tumors by the combined administration of FTS and 2-DG, which together induce pancreatic tumor cell death and tumor shrinkage under non-toxic conditions

    Water-Membrane Partition Thermodynamics of an Amphiphilic Lipopeptide: An Enthalpy-Driven Hydrophobic Effect

    Get PDF
    To shed light on the driving force for the hydrophobic effect that partitions amphiphilic lipoproteins between water and membrane, we carried out an atomically detailed thermodynamic analysis of a triply lipid modified H-ras heptapeptide anchor (ANCH) in water and in a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Combining molecular mechanical and continuum solvent approaches with an improved technique for solute entropy calculation, we obtained an overall transfer free energy of ∼−13 kcal mol−1. This value is in qualitative agreement with free energy changes derived from a potential of mean force calculation and indirect experimental observations. Changes in free energies of solvation and ANCH conformational reorganization are unfavorable, whereas ANCH-DMPC interactions—especially van der Waals—favor insertion. These results are consistent with an enthalpy-driven hydrophobic effect, in accord with earlier calorimetric data on the membrane partition of other amphiphiles. Furthermore, structural and entropic analysis of molecular dynamics-generated ensembles suggests that conformational selection may play a hitherto unappreciated role in membrane insertion of lipid-modified peptides and proteins

    Grb2 depletion under non-stimulated conditions inhibits PTEN, promotes Akt-induced tumor formation and contributes to poor prognosis in ovarian cancer

    Get PDF
    In the absence of extracellular stimulation the adaptor protein growth factor receptor-bound protein (Grb2) and the phospholipase Plcγ1 compete for the same binding site on fibroblast growth factor receptor 2 (FGFR2). Reducing cellular Grb2 results in upregulation of Plcγ1 and depletion of the phospholipid PI(4,5)P2. The functional consequences of this event on signaling pathways are unknown. We show that the decrease in PI(4,5)P2 level under non-stimulated conditions inhibits PTEN activity leading to the aberrant activation of the oncoprotein Akt. This results in excessive cell proliferation and tumor progression in a xenograft mouse model. As well as defining a novel mechanism of Akt phosphorylation with important therapeutic consequences, we also demonstrate that differential expression levels of FGFR2, Plcγ1 and Grb2 correlate with patient survival. Oncogenesis through fluctuation in the expression levels of these proteins negates extracellular stimulation or mutation and defines them as novel prognostic markers in ovarian cancer

    Ras Inhibition Induces Insulin Sensitivity and Glucose Uptake

    Get PDF
    BACKGROUND: Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2 diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose uptake, as well as its influence on type 2 diabetes development. METHODS AND FINDINGS: The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-molecule Ras inhibitor. The involvement of IκB and NF-κB in Ras-inhibited glucose uptake was investigated by immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IκB expression accompanied by decreased expression of NF-κB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of hyperglycemia and the levels of serum insulin were significantly decreased. CONCLUSIONS: Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes
    corecore