1,865 research outputs found

    A variational approach to approximate particle number projection with effective forces

    Full text link
    Kamlah's second order method for approximate particle number projection is applied for the first time to variational calculations with effective forces. High spin states of normal and superdeformed nuclei have been calculated with the finite range density dependent Gogny force for several nuclei. Advantages and drawbacks of the Kamlah second order method as compared to the Lipkin-Nogami recipe are thoroughly discussed. We find that the Lipkin-Nogami prescription occasionally may fail to find the right energy minimum in the strong pairing regime and that Kamlah's second order approach, though providing better results than the LN one, may break down in some limiting situations.Comment: 16 pages, 8 figure

    Intermittency at critical transitions and aging dynamics at edge of chaos

    Full text link
    We recall that, at both the intermittency transitions and at the Feigenbaum attractor in unimodal maps of non-linearity of order ζ>1\zeta >1, the dynamics rigorously obeys the Tsallis statistics. We account for the qq-indices and the generalized Lyapunov coefficients λq\lambda_{q} that characterize the universality classes of the pitchfork and tangent bifurcations. We identify the Mori singularities in the Lyapunov spectrum at the edge of chaos with the appearance of a special value for the entropic index qq. The physical area of the Tsallis statistics is further probed by considering the dynamics near criticality and glass formation in thermal systems. In both cases a close connection is made with states in unimodal maps with vanishing Lyapunov coefficients.Comment: Proceedings of: STATPHYS 2004 - 22nd IUPAP International Conference on Statistical Physics, National Science Seminar Complex, Indian Institute of Science, Bangalore, 4-9 July 2004. Pramana, in pres

    Properties of the predicted super-deformed band in ^{32}S

    Full text link
    Properties like the excitation energy with respect to the ground state, moments of inertia, B(E2) transition probabilities and stability against quadrupole fluctuations at low spin of the predicted superdeformed band of ^{32}S are studied with the Gogny force D1S using the angular momentum projected generator coordinate method for the axially symmetric quadrupole moment. The Self Consistent Cranking method is also used to describe the superdeformed rotational band. In addition, properties of some collective normal deformed states are discussed.Comment: 7 pages, 3 figure

    Selfconsistent calculations of fission barriers in the Fm region

    Get PDF
    The fission barriers of the nuclei 254Fm, 256Fm, 258Fm, 258No and 260Rf are investigated in a fully microscopic way up to the scission point. The analysis is based on the constrained Hartree-Fock-Bogoliubov theory and Gogny's D1S force. The quadrupole, octupole and hexadecapole moments as well as the number of nucleons in the neck region are used as constraints. Two fission paths, corresponding to the bimodal fission, are found. The decrease with isotope mass of the half-life times of heavy Fm isotopes is also explained.Comment: 29 pages in LaTeX including 14 figure

    Heterostructure of 2D Materials: HfS2/HfO2/Si

    Get PDF
    Heterostructures have been utilized in electronic devices for over 50 years with the proposal for the first heterostructure transistor in 1957. With the scaling of devices, it is necessary to create new heterostructures that will comply with Moore’s Law, as well as make devices faster and consume less power. Novel 2D materials, such as hafnium disulfide, have shown promise as an active channel layer, while hafnium dioxide is already proven to be a replacement of silicon dioxide for the gate insulating layer. However, fabrication techniques for wide-scale integration of these heterostructures have not yet been achieved. Also, the dielectric properties of hafnium dioxide must be realized before it can be used as a replacement of silicon dioxide. Dielectric spectroscopy results indicate that the dielectric constant for the samples was between 15-29, with sample 2 showing the highest dielectric constant of 28.8 and the lowest range of dielectric loss when measured from 200 Hz to 90 kHz. However, the results also indicate that proper contact of the probe with the electrodes is necessary to minimize error. Thus, the erroneous values at some frequencies could be attributed to poor ohmic contact of the probes, or a miscalibration of the system. I have also shown that hafnium disulfide layers can be created by converting some top layers of HfO2 thin films through sulfidation in hydrothermal process, thus demonstrating that creating a HfO2/HfS2 heterostructure is possible. XRD analysis shows a broad peak after sulfidation that relates to hafnium oxysulfide. In addition, the Raman analysis indicates that hafnium disulfide is present after sulfidation of hafnium dioxide

    Unveiling the origin of shape coexistence in lead isotopes

    Full text link
    The shape coexistence in the nuclei 182192^{182-192}Pb is analyzed within the Hartree-Fock-Bogoliubov approach with the effective Gogny force. A good agreement with the experimental energies is found for the coexisting spherical, oblate and prolate states. Contrary to the established interpretation, it is found that the low-lying prolate and oblate 0+0^+ states observed in this mass region are predominantly characterized by neutron correlations whereas the protons behave as spectators rather than playing an active role.Comment: 5 pages, 6 postscript figure

    Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    Full text link
    We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 <= Z <= 104 and 144 <= N <= 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modellingComment: 43 LaTeX pages, 14 figures, accepted in Nuclear Physics A, Special Issue on Superheavy Element

    Opening up the Quantum Three-Box Problem with Undetectable Measurements

    Get PDF
    One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here we implement the 'three-box' quantum game of Aharonov and Vaidman in which quantum measurements add no detectable noise to a classical signal, by utilising state-of-the-art control and measurement of the nitrogen vacancy centre in diamond. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure, however classical observers cannot invoke measurement-induced disturbance to explain this discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by > 7.8 standard deviations, allowing us for the first time to exclude the property of macroscopic state-definiteness from our system. Our experiment is then equivalent to a Kochen-Spekker test of quantum non-contextuality that successfully addresses the measurement detectability loophole

    Entangled spinning particles in charged and rotating black holes

    Full text link
    Spin precession for an EPR pair of spin-1/2 particles in equatorial orbits around a Kerr-Newman black hole is studied. Hovering observers are introduced to ensure fixed reference frames in order to perform the Wigner rotation. These observers also guarantee a reliable direction to compare spin states in rotating black holes. The velocity of the particle due frame-dragging is explicitly incorporated by addition of velocities with respect the hovering observers and the corresponding spin precession angle is computed. The spin-singlet state is observed to be mixed with the spin-triplet by dynamical and gravity effects, thus it is found that a perfect anti-correlation of entangled states for these observers is deteriorated. Finally, an analysis concerning the different limit cases of parameters of spin precession including the frame-dragging effects is carried out.Comment: 25+1 pages, 7 eps figures. Major changes were made through all the manuscript. Clarifications regarding modifications were introduced through the draft. Figures were changed and reduced in number. arXiv admin note: text overlap with arXiv:quant-ph/030711
    corecore