1,905 research outputs found

    Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

    Full text link
    We developed an apparatus to couple a 50-micrometer diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed "cryotaper" to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostat's base temperature of 1.65K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability and cryogenic cooling.Comment: 8 pages, 6 figure

    Resolved-sideband cooling and measurement of a micromechanical oscillator close to the quantum limit

    Full text link
    The observation of quantum phenomena in macroscopic mechanical oscillators has been a subject of interest since the inception of quantum mechanics. Prerequisite to this regime are both preparation of the mechanical oscillator at low phonon occupancy and a measurement sensitivity at the scale of the spread of the oscillator's ground state wavefunction. It has been widely perceived that the most promising approach to address these two challenges are electro nanomechanical systems. Here we approach for the first time the quantum regime with a mechanical oscillator of mesoscopic dimensions--discernible to the bare eye--and 1000-times more massive than the heaviest nano-mechanical oscillators used to date. Imperative to these advances are two key principles of cavity optomechanics: Optical interferometric measurement of mechanical displacement at the attometer level, and the ability to use measurement induced dynamic back-action to achieve resolved sideband laser cooling of the mechanical degree of freedom. Using only modest cryogenic pre-cooling to 1.65 K, preparation of a mechanical oscillator close to its quantum ground state (63+-20 phonons) is demonstrated. Simultaneously, a readout sensitivity that is within a factor of 5.5+-1.5 of the standard quantum limit is achieved. The reported experiments mark a paradigm shift in the approach to the quantum limit of mechanical oscillators using optical techniques and represent a first step into a new era of experimental investigation which probes the quantum nature of the most tangible harmonic oscillator: a mechanical vibration.Comment: 14 pages, 4 figure

    Attosecond light-pulse-induced photoassociation

    Get PDF

    Comparison of Quadratic- and Median-Based Roughness Penalties for Penalized-Likelihood Sinogram Restoration in Computed Tomography

    Get PDF
    We have compared the performance of two different penalty choices for a penalized-likelihood sinogram-restoration strategy we have been developing. One is a quadratic penalty we have employed previously and the other is a new median-based penalty. We compared the approaches to a noniterative adaptive filter that loosely but not explicitly models data statistics. We found that the two approaches produced similar resolution-variance tradeoffs to each other and that they outperformed the adaptive filter in the low-dose regime, which suggests that the particular choice of penalty in our approach may be less important than the fact that we are explicitly modeling data statistics at all. Since the quadratic penalty allows for derivation of an algorithm that is guaranteed to monotonically increase the penalized-likelihood objective function, we find it to be preferable to the median-based penalty
    corecore