73 research outputs found

    Liquid transport in scale space

    Get PDF
    International audienceWhen a liquid stream is injected into a gaseous atmosphere, it destabilizes and continuously passes through different states characterized by different morphologies. Throughout this process, the flow dynamics may be different depending on the region of the flow and the scales of the involved liquid structures. Exploring this multi-scale, multi-dimensional phenomenon requires some new theoretical tools, some of which need yet to be elaborated. Here, a new analytical framework is proposed on the basis of two-point statistical equations of the liquid volume fraction. This tool, which originates from single phase turbulence, allows us notably to decompose the fluxes of liquid in flow–position space and scale space. Direct numerical simulations of liquid–gas turbulence decaying in a triply periodic domain are then used to characterize the time and scale evolution of the liquid volume fraction. It is emphasized that two-point statistics of the liquid volume fraction depend explicitly on the geometrical properties of the liquid–gas interface and in particular its surface density. The stretch rate of the liquid–gas interface is further shown to be the equivalent for the liquid volume fraction (a non-diffusive scalar) of the scalar dissipation rate. Finally, a decomposition of the transport of liquid in scale space highlights that non-local interactions between non-adjacent scales play a significant role

    Wake deviation of yawed wind turbine by Large-Eddy Simulation

    Get PDF
    International audienceKeywords: Large Eddy Simulation, yaw and wake interaction According to the current energetic and environmental challenges, maximizing the electric power generated in windfarms is a societal concern. New strategies such as involving wind turbine yaw angle seem relevant to reduce wake interaction and associated power losses [1]. Therefore, yawed turbine aerodynamics is modified and remains a challenging investigation topic. Since experimental data on actual windfarm scales are not affordable and given the constant growth of computational resources, high order numerical simulations tend to be a promising approach [2]. The goal of this study is to evaluate a highly resolved numerical model under yaw condition in a wind tunnel before applying it to actual windfarm. The blade modeling is performed using an Actuator Line Method [3] (ALM), coupled to the low Mach-number massively-parallel finite-volume Large-Eddy Simulation (LES) flow solver on unstructured meshes, called YALES2 [4] [5]. The Blind Test 5 experimental configuration led at NTNU [6], gathering numerous experimental data, is reproduced in this study. After the study of a yawed turbine wake interaction with downstream turbine the study of a single yawed turbine (+30 o and 0 o) will be presented. The computational domain of these cases will be the NTNU wind tunnel, involving a turbulence grid aiming to create a fully turbulent sheared inflow [6]. The grid will be modeled using multiple Actuator Lines (to mimic the turbine blades) with dedicated polars [7] [8]. Each computational case is performed on a unstructured mesh with around 150.10 6 tetrahedra. An instantaneous velocity field of the yawed turbine wake interaction is presented on Figure 1. Figure 1: Instantaneous streamwise velocity field of wake interaction between two turbines in the NTNU wind tunnel with unstructured mes

    Turbulent Combustion of Polydisperse Evaporating Sprays with Droplet Crossing: Eulerian Modeling and Validation in the Infinite Knudsen Limit

    Get PDF
    The accurate simulation of the dynamics of polydisperse evaporating sprays in unsteady gaseous flows with large-scale vortical structures is both a crucial issue for industrial applications and a challenge for modeling and scientific computing. The difficulties encountered by the usual Lagrangian approaches make the use of Eulerian models attractive, aiming at a lower cost and an easier coupling with the carrier gaseous phase. Among these models, the multi-fluid model allows for a detailed description of the polydispersity and size-velocity correlations for droplets of various sizes. The purpose of the present study is twofold. First, we extend the multi-fluid model in order to cope with crossing droplet trajectories by using the quadrature method of moments in velocity phase space conditioned by size. We identify the numerical difficulties and provide dedicated numerical schemes in order to preserve the velocity moment space. Second, we conduct a comparison study and demonstrate the capability of such an approach to capture the dynamics of an evaporating polydisperse spray in a 2-D free jet configuration. We evaluate the accuracy and computational cost of Eulerian models and related discretization schemes vs. Lagrangian solvers and show that, even for finite Stokes number, the standard Eulerian multi-fluid model can be accurate at reasonable cost

    Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model

    No full text
    International audienceThe injection of liquid fuel is a common procedure in turbulent combustion devices operating in the nonpremixed regime. Various numerical models may be found in the literature to calculate such turbulent flames, using either Reynolds averaged Navier-Stokes techniques (RANS) or large eddy simulation (LES). The typical inputs of nonpremixed turbulent combustion modeling are the mean and the fluctuations of the mixture fraction. In computational fluid dynamics codes, the mean source of mixture fraction may be provided by Euler-Lagrange spray modeling. However, the sources of fluctuations of mixture fraction due to vaporization require more closures. Direct numerical simulation (DNS) provides a way of estimating these sources and, using DNS of droplets evaporating in a turbulent flow, it is described how they play an important role in the time evolution of fuel/air mixing in a dilute spray. The statistical properties of the spray and of the scalar field are analyzed to propose a single droplet model (SDM) to evaluate these sources. SDM calculates mean values of the Eulerian source of fuel conditioned on the mixture fraction

    Development of an extended reactor configuration to analyze preferential segregation impact on spray autoignition

    No full text
    International audienceThe chemical reactor concept, usually based on a homogeneous mixture, is extended to non-homogeneous two-phase flows to study the impact of preferential segregation on the autoignition of an n-heptane spray in air. To introduce inhomogeneities, two-dimensional reactors are resolved thanks to direct numerical simulations (DNS) with Eulerian/Lagrangian description to follow the evolution of the carrier phase and the dispersed evaporating droplets, respectively. Two-way coupling is considered through exchange of mass, momentum, and energy between the carrier-gas phase and the dispersed phase. A chemistry mechanism with 29 species and 52 reactions was chosen to describe the chemical reaction paths. Several simulations were performed with various initial gas temperatures (i.e. low, intermediate and high) and various geometrical and physical characteristics of the preferential segregation. Results confirmed that evaporative cooling, vapor mass quantity and turbulence mixing play important roles in the two-phase flow autoignition. We discussed the ignition delay as well as the location of the first hot spots according to the initial gas temperatures. The dependence of most reactive mixture fraction on initial carrier-gas temperature is non-monotonic, thus there is a strong correlation between the first autoignition location and low scalar dissipation rate. On the other hand, the autoignition can start whatever the vorticity magnitude is
    corecore