5,725 research outputs found
Simulation of an 1857-like Mw 7.9 San Andreas Fault Earthquake and the Response of Tall Steel Moment Frame Buildings in Southern California – A Prototype Study
In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing
in a southeasterly direction for more than 360 km. Such a unilateral rupture produces significant directivity
toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake
would have had significant long-period content (2-8 s), and the objective of this study is to quantify the impact
of such an earthquake on two 18-story steel moment frame building models, hypothetically located at 636 sites
on a 3.5 km grid in southern California. End-to-end simulations include modeling the source and rupture of a
fault at one end, numerically propagating the seismic waves through the earth structure, simulating the damage
to engineered structures and estimating the economic impact at the other end using high-performance computing.
In this prototype study, we use an inferred finite source model of the magnitude 7.9, 2002 Denali fault
earthquake in Alaska, and map it onto the San Andreas fault with the rupture originating at Parkfield and
propagating southward over a distance of 290 km. Using the spectral element seismic wave propagation code,
SPECFEM3D, we simulate an 1857-like earthquake on the San Andreas fault and compute ground motions at
the 636 analysis sites. Using the nonlinear structural analysis program, FRAME3D, we subsequently analyze
3-D structural models of an existing tall steel building designed using the 1982 Uniform Building Code (UBC),
as well as one designed according to the 1997 UBC, subjected to the computed ground motion at each of these
sites. We summarize the performance of these structural models on contour maps of peak interstory drift.
We then perform an economic loss analysis for the two buildings at each site, using the Matlab Damage and
Loss Analysis (MDLA) toolbox developed to implement the PEER loss-estimation methodology. The toolbox
includes damage prediction and repair cost estimation for structural and non-structural components and allows
for the computation of the mean and variance of building repair costs conditional on engineering demand
parameters (i.e. inter-story drift ratios and peak floor accelerations). Here, we modify it to treat steel-frame
high-rises, including aspects such as mechanical, electrical and plumbing systems, traction elevators, and the
possibility of irreparable structural damage. We then generate contour plots of conditional mean losses for the
San Fernando and the Los Angeles basins for the pre-Northridge and modern code-designed buildings, allowing
for comparison of the economic effects of the updated code for the scenario event. In principle, by simulating
multiple seismic events, consistent with the probabilistic seismic hazard for a building site, the same basic
approach could be used to quantify the uncertain losses from future earthquakes
Imaging of Hepatocellular Carcinoma by Computed Tomography and Magnetic Resonance Imaging: State of the Art
Hepatocellular carcinoma (HCC) is a very frequent tumor worldwide. Its incidence is linked to the distribution of liver cirrhosis and viral hepatitis, which are the main risk factors for the development of HCC. For the evaluation of the cirrhotic liver and for the diagnosis of HCC, multidetector computed tomography (MDCT) proved to be a robust and reliable tool. In MDCT the diagnosis of HCC can be made based on neovascularization with increased arterial and decreased portal venous supply. With modern magnetic resonance imaging (MRI), spatial resolution and robustness increased dramatically. Beside the evaluation of neovascularization by means of gadolinium-enhanced early dynamic MRI, the main advantages of MRI are additional information on tissue composition and liver-specific function. With diffusion-weighted imaging or plain T(1)- and T(2)-weighted sequences, different tissue elements like fat, hemorrhage, glycogen, edema and cellular density can be evaluated. Liver-specific contrast agents give insight into the Kupffer cell density or the hepatocellular function. The integration of all these parts into the MR examination allows for a very high detection rate for overt HCC nowadays, although very small HCCs are still a challenge. Moreover, insight into the different stages of hepatocarcinogenesis can be possible with MRI. Despite its limited availability in some countries, it has to be rendered to be the modality of choice for the distinct evaluation of the cirrhotic liver. Copyright (C) 2009 S. Karger AG, Base
Efficient operation of a high-power X-band gyroklystron
Experimental studies of amplification in a two-cavity X-band gyroklystron are reported. The system utilizes a thermionic magnetron injection gun at voltages up to 440 kV and currents up to 190 A in 1-μs pulses. Optimum performance is achieved by tapering the magnetic-field profile. Peak powers of 20 MW in the TE01 mode at 9.87 GHz are measured with calibrated crystals and with methanol calorimetry. Resultant efficiencies are in excess of 31% and large-signal gains surpass 26 dB. The experimental results are in good agreement with simulated results from a partially self-consistent, nonlinear, steady-state code
Production of Enhanced Beam Halos via Collective Modes and Colored Noise
We investigate how collective modes and colored noise conspire to produce a
beam halo with much larger amplitude than could be generated by either
phenomenon separately. The collective modes are lowest-order radial eigenmodes
calculated self-consistently for a configuration corresponding to a
direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij
equilibrium. The colored noise arises from unavoidable machine errors and
influences the internal space-charge force. Its presence quickly launches
statistically rare particles to ever-growing amplitudes by continually kicking
them back into phase with the collective-mode oscillations. The halo amplitude
is essentially the same for purely radial orbits as for orbits that are
initially purely azimuthal; orbital angular momentum has no statistically
significant impact. Factors that do have an impact include the amplitudes of
the collective modes and the strength and autocorrelation time of the colored
noise. The underlying dynamics ensues because the noise breaks the
Kolmogorov-Arnol'd-Moser tori that otherwise would confine the beam. These tori
are fragile; even very weak noise will eventually break them, though the time
scale for their disintegration depends on the noise strength. Both collective
modes and noise are therefore centrally important to the dynamics of halo
formation in real beams.Comment: For full resolution pictures please go to
http://www.nicadd.niu.edu/research/beams
Tumor Growth Increases Neuroinflammation, Fatigue and Depressive-like Behavior Prior to Alterations in Muscle Function
Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth
On the stability and emittance growth of different particle phase- space distributions in a long magnetic quadrupole channel.
High-power operation of a K-band second harmonic gyroklystron
Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared
Fluoxetine Prevents the Development of Depressive-like Behavior in a Mouse Model of Cancer Related Fatigue
Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine
Age-dependent differences in human brain activity using a face- and location-matching task: An fMRI study
Purpose: To evaluate the differences of cortical activation patterns in young and elderly healthy subjects for object and spatial visual processing using a face- and location-matching task. Materials and Methods: We performed a face- and a location-matching task in 15 young (mean age: 28 +/- 9 years) and 19 elderly (mean age: 71 +/- 6 years) subjects. Each experiment consisted of 7 blocks alternating between activation and control condition. For face matching, the subjects had to indicate whether two displayed faces were identical or different. For location matching, the subjects had to press a button whenever two objects had an identical position. For control condition, we used a perception task with abstract images. Functional imaging was performed on a 1.5-tesla scanner using an EPI sequence. Results: In the face-matching task, the young subjects showed bilateral (right 1 left) activation in the occipito-temporal pathway (occipital gyrus, inferior and middle temporal gyrus). Predominantly right hemispheric activations were found in the fusiform gyrus, the right dorsolateral prefrontal cortex (inferior and middle frontal gyrus) and the superior parietal gyrus. In the elderly subjects, the activated areas in the right fronto-lateral cortex increased. An additional activated area could be found in the medial frontal gyrus (right > left). In the location-matching task, young subjects presented increased bilateral (right > left) activation in the superior parietal lobe and precuneus compared with face matching. The activations in the occipito-temporal pathway, in the right fronto-lateral cortex and the fusiform gyrus were similar to the activations found in the face-matching task. In the elderly subjects, we detected similar activation patterns compared to the young subjects with additional activations in the medial frontal gyrus. Conclusion: Activation patterns for object-based and spatial visual processing were established in the young and elderly healthy subjects. Differences between the elderly and young subjects could be evaluated, especially by using a face-matching task. Copyright (c) 2007 S. Karger AG, Basel
- …
