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NUMERICAL STUDIES OF ION-LOADED ELECTRON RINGS
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A 21-dimensional particle simulation code is used to study a ring of relativistic (3.5-MeV) electrons which is circulating in
an applied uniform magnetic field. The ring is seeded with a small percentage of positive ions. Axial symmetry is assumed,
and the transverse focusing conditions are investigated as a function of ring geometry, fraction of ions, and conducting
boundaries. The mean radii of the electron and ion subrings are oscillating and electron loss occurs under some condi-
tions. We discuss two methods which are effective in combating this loss: the inclusion of an inner conductor, and the

elimination of magnetic images.

I PROBLEM

Several laboratories are attempting to use circulat-
ing rings of electrons to trap and accelerate ions
to high energies."~> Among the theoretical prob-
lems associated with these experiments are the
oscillations and electron loss from a ring seeded
with ions.

Ivanov et al.® Laslett,” and Reiser® used a
linear analysis to calculate the small-amplitude
“betatron” oscillation frequencies about an equi-
librium orbit in such a system. Davidson, Lawson
and Mahajan® studied the equilibrium properties
of such rings within the framework of the steady-
state Vlasov-Maxwell equations. The problem
of resonances due to coupling between the trans-
verse oscillations in the electron and ion subrings
was first treated by Koshkarev and Zenkevich.!°
Boris and Lee'! performed some preliminary
computer simulations of ion-loaded rings in a
uniform applied magnetic field; they found that
due to radial separation of the electron and ion
subrings, as well as an apparent lack of axial
focusing, beam blowup and particle loss occurred.

In the present paper we discuss the results of our
own simulations of this problem, and we reach the
following conclusions. (1) Although we confirm
the results of Boris and Lee for the conditions
studied by them, through the addition of an inner
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radial conducting boundary the electron loss may
be reduced, or even stopped entirely, and in typical
cases a substantial electron core will be retained.
(2) By designing the radial boundaries to eliminate
magnetic image forces (“squirrel cage” windings),'?
the electron loss may be reduced even further.

A schematic of the initial conditions for the
problem is shown in Figure 1. We use cylindrical
coordinates r, 0, z and assume 6-symmetry; thus
our independent variables are r, z and time t.
We use periodic boundary conditions in the z
direction; thus in Figure 1 there are also rings at
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FIGURE 1 Schematic of initial conditions for the problem.
Boundaries at r = 2 and 12.5 cm are conductors; periodic
boundary conditions are used in z. Azimuthal symmetry about
the z-axis is assumed.
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z = —10 and +30 cm. The z-separation of 20 cm
between rings is much larger than the (average
initial) ring radius of 5 cm, so that we are in effect
solving the problem of a ring by itself between
infinitely long radial boundaries. To check that
this is so, several of our solutions were also obtained
with a ring separation of 40 cm, and no significant
differences were observed.

The assumption of axial symmetry in our system
implies that any effects that result from, or lead to,
variations in charge and current distribution
with azimuth angle 6 are excluded in the computer
simulation. Examples of effects which we do not
treat are coherent off-centering of one or both
particle subrings, electron-ion coupling resonances,
and the negative mass instability. Our main ob-
jective is a self-consistent study of the equilibrium
problem; in particular, the effects of beam di-
mensions, positive ions and conducting boundaries.

The parameter values in this paper were chosen
to be relevant to the Maryland electron ring
experiments.*®> Thus in Figure 1 the inner and
outer radial conducting boundaries (both at zero
potential) are at a = 2 cm and b = 12.5 cm. The
average initial ring radius of R=15 cm was
chosen so that R? = ab, which is the condition
that the radial position of a thin-shell electron
beam be chosen to minimize the potential.'-14

The only applied field is an axial magnetic
field B, = 0.266 T, chosen for equilibrium of a
y = 7.85 beam (thus the initial kinetic energy, all
0-directed, of the beam electrons is 3.5 MeV). The
beam self-fields are obtained from the equations

0?4, 0 (10 .

022 + or <’— or ("Ao)> = —HolJe (1)
3¢ 10 ( o p
ﬁﬂ"a(ﬁ)—“g @

04, G0} 09

6 ot r E z 0z (3)
By=t0 (jrar B= - p 10y,
0 0z r Or

)

where A, is vector potential (6-component),
(jy» jos J2) 1s electron current density, ¢ is electric
potential, and (E,, E,, E,) and (B,, B,, B,) are the
electric and magnetic self-fields, caused by space
charge and induction. Note that radiation fields
and induction fields due to 0B,/0t have been
neglected, which can be justified by estimating

their magnitudes.

The charge density p = e(n; — n,), where n;
is ion density and n, is beam (electron) density.
In Figure 1 the ions are assumed to be already
present in the ring; we define f as the initial
number N; of ions, divided by the initial number
N, of electrons in the ring:

f = NyN.. ©)
The equation of motion for the electrons is
dv V-E
—=—i<E— ; V+V><B> (6)
dt my c

where m, e are electron rest-mass and charge,
c is the speed of light, y = (1 — V?/c*)~ /2, and
V=(V,, V, V,) is the electron velocity. For the
nonrelativistic ions we have
dv,
‘= ZE 7)

dt  m,

where m;, V; are ion mass and velocity, and we
neglect magnetic forces and 0-motion of the ions.
This is justified since the dominant effects in
regard to the focusing problem are the radial
Coulomb forces between electrons and ions.

I CODE

The simulation particles, each of which represents
aring of real particles, are initialized by distributing
them (both electrons and ions) uniformly over the
cross section indicated in Figure 1. The electrons
are given initial velocity ¥, = 2.97556 x 10® m/sec,
the ions start at rest. The basic cycle in the code is
then to solve in turn for (1) densities, (2) potentials
and fields, and (3) new particle velocities and
positions. The densities are found by standard
area weighting techniques.'>~'7 The solvers for
Egs. (1) and (2) are based on the fast Fourier
transform method of Hockney.'® The “particle
pusher” step in the cycle is similar to that used
recently in solving diode problems!?; given the
fields at time step n, the particles are advanced
to step n + 1 via a predictor-corrector method.
Our typical r-z mesh is 33 x 33, time step
5 x 10712 sec (cyclotron period is about 10~ ? sec),
number of simulation electrons and ions 2000
and 400, respectively. That these choices are
adequate for the problem at hand was checked by
trial-and-error variation. Our scheme is second-
order accurate in the time and space steps, except
for E, in Eq. (3), which is first-order. Fortunately,
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we find E, to be relatively small (but not negligible).

Since it is costly to use the full m;/m value, we
have generally used artificially light ions, with
m;/m = 100. As a check, one case was repeated
with m;/m = 400. Thus in the results presented
below, the ion behavior occurs on a time scale at
least 4 times faster than in reality, and in giving
times for electron loss, etc., our computed results
will always err on the pessimistic side.

The boundary conditions used are periodic in z,
and perfectly conducting at r =a and r=b»
(¢ = Ay = 0, where A, does not include the applied
B,). The exception is the several cases to be dis-
cussed below in which it was desired to have the
radial boundaries be electrically, but not mag-
netically, conducting. In these cases the ¢ =0
condition was still used, but the A, boundary
values were determined self-consistently (every
few hundred time steps is sufficient) by integrating
over the internal current loops.

II THEORETICAL CONSIDERATIONS

Before presenting the results of our numerical
simulation studies, let us briefly examine the
problem of an ion-loaded ring from the point of
view of the linear analyses mentioned above.
The betatron oscillation frequencies, v, and v,
(normalized to eB,/my), of the electrons about the
equilibrium orbit are a measure for the radial
and axial force balance in the toroidal beam; in
fact, v2 and v? are directly proportional to the
focusing forces in each direction. If the effects of
self-fields are neglected, the radial and axial
betatron frequencies in a uniform magnetic field
are v,=1 and v, =0, respectively. Thus, the
major problem is the absence of focusing forces
in axial direction. If self-fields are included, one
obtains the following formula®:

o __ 4wR® (1 \_uP
AR N R (v2 4 ) 7 @®

R is the major radius of the ring, 26, and 24,
are the minor dimensions in the radial and axial
directions. The parameters u and P are defined as

U =458 x 10‘14%, ©)

where R is measured in cm, and

16R
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The first term in Eq. (8) represents the “linear-
beam” effect, i.e., the balance between Coulomb
repulsion and magnetic attraction present in a
straight beam of relativistic electrons with station-
ary positive ions. It is defocusing as long as
f < 1/y*. The second term in Eq. (8) represents the
“toroidal” effect, i.e., the forces acting on an electron
due to the toroidal shape of the beam. This term
is always defocusing. Thus, in order to obtain a
net focusing force in the axial direction (vZ > 0),
the fraction f of stationary positive ions must
exceed the Budker limit° (f = 1/y?) by an amount
large enough to compensate for the toroidal
defocusing effect.

If conducting boundaries are present, the image
fields due to induced charges and currents produce
additional terms in the equations for v? and v?
which were discussed by Laslett.” With regard to
vZ, the electric image forces due to coaxial con-
ducting boundaries outside and/or inside of the
ion-loaded ring are focusing while the magnetic
image forces have a defocusing effect. The magnetic
image forces can be suppressed by preventing
azimuthal current flow in the conducting boundary.
This is accomplished by use of long, thin metallic
rods or strips in a squirrel-cage-type arrange-
ment.'? The “squirrel-cage” effect alleviates the
focusing problem and allows the use of a smaller
number of positive ions which is desirable for more
efficient acceleration by the expansion method
employed in electron ring accelerator experiments.
Detailed studies of the “squirrel-cage” focusing
method were made by Hofmann,?! and the effect
was confirmed in recent experiments at Garching.?

The linear analysis on which the previous
discussion of focusing forces is based is possible
only for thin rings in which the minor dimensions
are small compared to the major radius. In addi-
tion, the assumptions inherent in such a theory
provide only a rough approximation to the be-
havior of the actual system. In actual experiments,
the situation may differ significantly from these
models. At the University of Maryland, for
instance, the electron ring is being formed from a
long rotating sheet beam with axial dimensions
initially much larger than the radial width. These
facts motivated the numerical simulation studies
reported in this paper. Apart from the important
problem of axial focusing in beams with different
cross sections, we were also interested in the radial
motion. In particular, we wanted to see if the use
of an inner conductor would reduce the radial
separation of electron and ion subrings found in
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the simulation studies by Boris and Lee mentioned
earlier.!!

IV . NUMERICAL RESULTS

We begin the discussion of our computer results
with the case shown in Figure 1. The initial ring
cross section was assumed to be rectangular with
Ar, = 20, = Az, = 26, = 2 cm, the total number
of electrons was N, = 10!3 and the fraction of
ions was f=0.1. We should note that in the
absence of image effects due to the boundaries
these parameters would yield a value of v,
0.0815, from Eq. (8), i.e., a very weak focusing force
in the axial direction.

Figure 2 shows B,(r) through the center of the
ring (i.e., at z = 10 cm) at ¢t = 0. Note that the
current in the ring (value is 1.5 kA here) is only
able to reduce the B, field slightly below the vacuum
value (2.66 kG).
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FIGURE 2 B,(r) at z = 10 cm, ¢ = 0 for the case f = 0.1,
N, = 10'3, Ar, = Az, = 2 cm, inner conductor present. The
applied B, is 2.66 kG.

The potential well made by the electrons was
found to oscillate slightly about a mean value of
1.8 x 10° V. If this value is multiplied by 2/, =
2 x 10’[m~!] one gets a maximum electric field
(*holding power”) of 36 MV/m. The positive ions
will oscillate in this potential well. The electrons, on
the other hand, will oscillate or be lost from the
ring depending upon the parameters. For the case
under consideration, ¥, B, > E,, or v > 0, initially
for all electrons, so the beam pinches inward in z.
The periods of oscillation for a randomly selected
ion and electron are t,, = 1.03, 7,, = 8.1, 1,, =
4.36, 1,; = 5.9 where the times are in nanoseconds
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and the subscript “re,” for example, refers to
“radial” and “electron.” (Note that the ion times
are for the mass-ratio-100 ions.) For comparison,
the betatron frequency formulas of Ref. 8 [see also
Eq. (8) above] give 7,, = 1.01 and 7,, = 13 nsec
(or v, = 1.04, v, = 0.081), leading to a not un-
reasonable comparison considering that the analytic
formulas apply only to small, linear oscillations
and involve several simplifying assumptions, such
as stationary ions and absence of conducting
boundaries.

In addition to the incoherent particle oscillations,
there are coherent oscillations of the mean radii of
the electron and ion subrings as a function of time.

Soo, T

T
oo o 0%0%0, o°°°°° 0%, 0o,
Q o o
. . R4 . . .
sopiifeeestigaPeaec O q8er ec0 000 Lluy 0000 07
% L R S T TSR F R L
x
{emb xxx
48 xX"xx,(xxxxxxxlxxlxxKx
xxs
‘xxxKXXKxKKI
46 1 1 |
0 1 2 3 3 5

tins)

FIGURE 3 Average electron and ion radii vs. time for case
f=0.1, N, =103, Ar, = Az, = 2 cm. Solid dots: electrons,
with inner conductor; + : ions, with inner conductor. Open
circles: electrons, no inner conductor; X : ions, no inner con-
ductor. Electron cyclotron period is 1.05 nsec.

Figure 3 shows the average electron and ion radii
vs. time. Note that the electrons tend to remain
slightly outside the ions. Also shown are the results
obtained from the code by running a case which is
identical in all respects to the one under discussion,
except that the inner radial conductor has been
removed (as in Ref. 11). In this latter case, the oscilla-
tions of the mean radii are much more pronounced,
and the separation of the electron and ion sub-
rings is considerably larger. Thus one would
expect the beam to hold together better when an
inner conductor is present, and this expectation is
verified by Figure 4, which shows particle movie
frames (electrons only) for the two cases at 7 nsec.
With an inner conductor the beam is still intact,
whereas without an inner conductor the beam is
slowly evaporating away.

z z

FIGURE 4 Electrons at 7 nsec for the same cases as Fig. 3.
Left side: with inner conductor. Right side: no inner conductor.
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Note that the beam cross sections at 7 nsec are no
longer rectangular. In fact, the particle oscillations
discussed above cause a constantly changing enve-
lope of both the electron and ion subrings. To the
extent that one may separate “oscillations in mean
radius” from “envelope changes,” loss of electrons
seems to be associated more with the latter,
because the radial restoring forces are stronger
(vZ > v2) than the z-forces, i.e., beam loss is always
in z, never in r. We note that attempts to reduce
oscillations in this case by shifting the initial ring
center outward to the “correct” equilibrium radi-
us!! (we tried AR = 0.2 c¢m, with and without
inner conductor) gave no substantial difference
from the above results.

Next we consider the effect of shape. If we repeat
the above case (N, = 10'3, f = 0.1, with inner
conductor, 2 x 2 cm cross section) but rotate the
initial beam by 45° in the r-z plane, we obtain the
solution shown in Figure 5. This shows the r-z

‘ R

z

FIGURES Electrons at t = 0 (left side) and 7 nsec (right side)
for case f = 0.1, N, = 10!, inner conductor present, initial
r-z cross section rotated by 45°.

cross section of the electrons at t =0 and ¢t = 7
nsec. The results are similar to the previous
solution (compare the right side of Figure 5 with
the left side of Figure 4) except for the loss of a small
fringe of the beam. This suggests that the depen-
dence on initial shape is rather weak, at least as long
as this “thin-ring” geometry is used.

Next we consider beams which are initially
elongated in the z-direction, which is the case in the
Maryland experiment, since the ring is formed there
by beam injection through a cusp magnetic field.*->
If we start with Ar, = 1 cm, Az, = 4 cm, f = 0.1,
N, = 103, and use an inner conductor, we find that
initially ¥, B, > E, so the beam begins by pinching
in z. However, the envelope variations referred to
above cause considerable beam loss after this first
inward z-pinching, and at t = 17 nsec the situation
is as shown in Figure 6. Here, the electrons are on
the left and the ions are on the right. We note that
although the electrons are spread over the system
length, there is an apparent core at the center which

z z
FIGURE 6  Electrons (left side) and ions (right side) at 17 nsec
for case f = 0.1, N, = 10'3, Ar, = 1 cm, Az, = 4 cm, inner
conductor present.

contains about two-thirds of the initial beam. The
ions, on the other hand, are still clustered near their
initial position.

If we repeat this last case but start with f = 0.05,
we find that at t =0, E, > V,B, for the beam
electrons, so beam loss begins immediately. How-
ever, at late times this inequality is reversed, and
an electron core persists of about 407 of the
original beam. Again, the ions remain near their
initial location, except for the ever-present oscilla-
tions in the potential well of the electrons. The
depth of this well in this case beginsat 1.6 x 10>V,
and becomes gradually less deep as beam electrons
are lost; the depth at 20 nsec is 1.0 x 10° V.

Recalling that our boundary conditions in z are
periodic, one might ask if this core of electrons is at
least partly caused by electrons which leave one
end and enter the other. To check this, the f = 0.05
case above was done with periodic field conditions
but particle-absorbing walls at the ends, and the
results were as given above (specifically, at t = 21
nsec, 58% of the original electrons were left in the
system, and 389, were in the core (Az = 2 cm). We
tentatively conclude that for at least tens of nano-
seconds the ion-loaded rings tend toward a state in
which the “effective £~ is 10-15%.

Finally, we consider the effects of removing the
magnetic images. Experimentally this is accom-
plished by replacing the conducting radial boun-
daries by squirrel-cage boundaries, in which
azimuthal currents cannot flow but which remain
conductors electrostatically.’??! The way in which
this is done in the code was discussed in Section II.

For the case Ar, = 1 cm, Az, = 4 cm, f = 0.05,
inner conductor present (i.e., the case just discussed
but with no magnetic image forces), we find that
initially ¥, B, is larger than when the magnetic
images were included, in fact sufficiently larger to
make VB, > E, att = 0. Thus we expect, and find,
that the electron evaporation rate is much smaller
when the images are absent. In fact, by repeating
this case for other f values, we find that even a 2%
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ion-loaded ring, with no images, evaporates more
slowly than a 5% ion-loaded ring, with images.
Specifically, Table I shows the percentage of the
initial ring left in the system and in the core at
16 nsec. “Core” is defined by the central Az = 2 cm
region.

TABLE 1

Percentage of initial ring electrons left in system and in core
at ¢ = 16 nsec.

Case % left, system % left, core
f = 5%, with images 63 37
f = 5%, no images 93 52
f = 2%, no images 79 37

The electron ring at t = 0 and 16 nsec is shown
for the f = 2%, no-magnetic-image case in Figure
7.1In a sense it is our best solution, even though over
half the ring has been lost, since it has a small
initial f, and f is still only 57, at 16 nsec, and all
the ions remain trapped in the core (well depth at
16 nsec is 1.1 x 10° V). The maximum E, in the
ring (holding power) is 2.7 x 10° V/m (at 16 nsec).

- >35S R e S <

7 z
FIGURE 7 Electrons at ¢t = 0 (left side) and 16 nsec (right

side) for case f = 0.02, N, = 10*3, Ar, = 1 cm, Az, = 4 cm,
inner conductor present, no magnetic image forces.

V CONCLUSION

We conclude that in an electron ring in a uniform
magnetic field and loaded with a small percentage
of ions, under the conditions studied here, electron
losses may occur due to force imbalance, particu-
larly in the axial direction. We have studied two
ways in which these losses may be slowed, and
perhaps even cured: the use of an inner conductor
and the removal of magnetic images. We have
demonstrated the beneficial effects of these con-
ditions using a 23-dimensional particle simulation
code to solve the equations of a somewhat ideal-
ized model. While the demonstration has actually
only been carried out for parameters relevant to

the University of Maryland static-field accelera-
tor,*% it is hoped that the conclusions are general
enough to be of interest to anyone involved in the
electron-ring method of ion acceleration.
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