1,262 research outputs found

    Creating tissue on chip constructs in microtitre plates for drug discovery

    Get PDF
    We report upon a novel coplanar dielectrophoresis (DEP) based cell patterning system for generating transferrable hepatic cell constructs, resembling a liver-lobule, in culture. The use of paper reinforced gel substrates provided sufficient strength to enable these constructs to be transfered into 96-well plates for long term functional studies, including in the future, drug development studies. Experimental results showed that hepatic cells formed DEP field-induced structures corresponding to an array of lobule-mimetic patterns. Hepatic viability was observed over a period of 3 days by the use of a fluorescent cell staining technique, whilst the liver specific functionality of albumin secretion showed a significant enhancement due to the layer patterning of cell lines (HepG2/C3A), compared to 2D patterned cells and un-patterned control. This “build and transfer” concept could, in future, also be adapted for the layer-by-layer construction of organs-on-chip in microtitre formats

    Acoustically controlled enhancement of molecular sensing to assess oxidative stress in cells

    Get PDF
    We demonstrate a microfluidic platform for the controlled aggregation of colloidal silver nanoparticles using surface acoustic waves (SAWs), enabling surface enhanced Raman scattering (SERS) analysis of a cell based model for oxidative damage. We show that by varying the frequency and the power of the acoustic energy, it is possible to modulate the aggregation of the colloid within the sample and hence to optimise the SERS analysis

    Acoustic suppression of the coffee-ring effect

    Get PDF
    We study the influence of acoustic fields on the evaporative self-assembly of solute particles suspended inside sessile droplets of complex fluids. The self-assembly process often results in an undesirable ring-like heterogeneous residue, a phenomenon known as the coffee-ring effect. Here we show that this ring-like self-assembly can be controlled acoustically to form homogeneous disc-like or concentrated spot-like residues. The principle of our method lies in the formation of dynamic patterns of particles in acoustically excited droplets, which inhibits the evaporation-driven convective transport of particles towards the contact line. We elucidate the mechanisms of this pattern formation and also obtain conditions for the suppression of the coffee-ring effect. Our results provide a more general solution to suppress the coffee-ring effect without any physiochemical modification of the fluids, the particles or the surface, thus potentially useful in a broad range of industrial and analytical applications that require homogenous solute depositions

    Ultrasonic Wave Mixing for Nonlinear Ultrasonics in a Microfluidic Capillary

    Get PDF
    In this study we show that nonlinear ultrasonics, based on nonlinear wave mixing, can enable the measurement of the interactions between acoustic waves and a microliter liquid sample in a glass capillary microchannel. This has the potential to deliver new techniques with a high sensitivity to acoustic material propertie

    Channel integrated optoelectronic tweezer chip for microfluidic particle manipulation

    Get PDF
    Light patterned electrical fields have been widely used for the manipulation of microparticles, from cells to microscopic electronic components. In this work, we explore a novel electromechanical phenomenon for particle focusing and sorting where the electrical field patterns are shaped by a combination of the light patterned photoconductor and the channel geometry. This effect results from the combination of particle polarisation described by the Clausius–Mossotti relation and the engineering of large electric gradients produced by choosing the channels height to suit the size of the particles being manipulated. The matched geometry increases the distortion of the field created by a combination of the illuminated photoconductor and the particles themselves and hence the non-uniformity of the field they experience. We demonstrate a new channel integration strategy which allows the creation of precisely defined channel structures in the OET device. By defining channels in photoresist sandwiched between upper and lower ITO coated glass substrates we produce robust channels of well controlled height tailored to the particle. Uniquely, the top substrate is attached before photolithographically defining the channels. We demonstrate versatile control using this effect with dynamically reconfigurable light patterns allowing the retention against flow, focusing and sorting of micro particles within the channels. Contrary to traditional designs, this channel integrated device allows patterned micro channels to be used in conjunction with conductive top and bottom electrodes producing optimal conditions for the dielectrophoretic manipulation as demonstrated by the rapid flow (up to 5mm s−1 ) in which the particles can be focuse

    Green-function Method for Nonlinear Interactions of Elastic Waves

    Get PDF
    In the linear wave propagation regime, an analytical mesh-free Green-function decomposition has been shown as a viable alternative to FDTD and FEM. However, its expansion into nonlinear regimes has remained elusive due to the inherent linear properties of the Green-function approach. This work presents a novel frequency-domain Green function method to describe and model nonlinear wave interactions in isotropic hyperelastic media. As an example of the capabilities of the method, we detail the generation of sum frequency waves when initial quasimonochromatic waves are emitted in a fluid by finite sources. The method is supported by both numerical and experimental results using immersion ultrasonic techniques

    Creating tissue on chip constructs in microtitre plates for drug discovery

    Get PDF
    We report upon a novel coplanar dielectrophoresis (DEP) based cell patterning system for generating transferrable hepatic cell constructs, resembling a liver-lobule, in culture. The use of paper reinforced gel substrates provided sufficient strength to enable these constructs to be transfered into 96-well plates for long term functional studies, including in the future, drug development studies. Experimental results showed that hepatic cells formed DEP field-induced structures corresponding to an array of lobulemimetic patterns. Hepatic viability was observed over a period of 3 days by the use of a fluorescent cell staining technique, whilst the liver specific functionality of albumin secretion showed a significant enhancement due to the layer patterning of cell lines (HepG2/C3A), compared to 2D patterned cells and un-patterned control. This “build and transfer” concept could, in future, also be adapted for the layer-bylayer construction of organs-on-chip in microtitre formats

    Cycling of Rational Hybridization Chain Reaction To Enable Enzyme-Free DNA-Based Clinical Diagnosis

    Get PDF
    In order to combat the growing threat of global infectious diseases, there is a need for rapid diagnostic technologies that are sensitive and that can provide species specific information (as might be needed to direct therapy as resistant strains of microbes emerge). Here, we present a convenient, enzyme-free amplification mechanism for a rational hybridization chain reaction, which is implemented in a simple format for isothermal amplification and sensing, applied to the DNA-based diagnosis of hepatitis B virus (HBV) in 54 patients. During the cycled amplification process, DNA monomers selfassemble in an organized and controllable way only when a specific target HBV sequence is present. This mechanism is confirmed using super-resolution stochastic optical reconstruction microscopy. The enabled format is designed in a manner analogous to an enzyme-linked immunosorbent assay, generating colored products with distinct tonality and with a limit of detection of ca. five copies/reaction. This routine assay also showed excellent sensitivity (>97%) in clinical samples demonstrating the potential of this convenient, low cost, enzyme-free method for use in low resource settings

    Frequency dependence of microflows upon acoustic interactions with fluids

    Get PDF
    Rayleigh surface acoustic waves (SAWs), generated on piezoelectric substrates, can interact with liquids to generate fast streaming flows. Although studied extensively, mainly phenomenologically, the effect of the SAW frequency on streaming in fluids in constrained volumes is not fully understood, resulting in sub-optimal correlations between models and experimental observations. Using microfluidic structures to reproducibly define the fluid volume, we use recent advances modeling the body force generated by SAWs to develop a deeper understanding of the effect of acoustic frequency on the magnitude of streaming flows. We implement this as a new predictive tool using a finite element model of fluid motion to establish optimized conditions for streaming. The model is corroborated experimentally over a range of different acoustic excitation frequencies enabling us to validate a design tool, linking microfluidic channel dimensions with frequencies and streaming efficiencies. We show that in typical microfluidic chambers, the length and height of the chamber are critical in determining the optimum frequency, with smaller geometries requiring higher frequencies

    Low-cost, multispectral imaging mini-microscope for longitudinal oximetry in small animals

    Get PDF
    We present a multispectral imaging mini-microscope for longitudinal oximetry in small animals. By replacing expensive and complex imaging systems using a low-cost imaging system
    • 

    corecore