50,480 research outputs found

    Directional Detection of Dark Matter with MIMAC

    Full text link
    Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to Dark Matter phenomenology using directional detection. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated. However, such results need highly accurate track reconstruction which should be reachable by the MIMAC detector using a dedicated readout combined with a likelihood analysis of recoiling nuclei.Comment: 4 pages, 2 figures, to appear in the proceedings of the TAUP 2011 conference held in Munich (5 - 9 September, 2011

    Kinklike structures in scalar field theories: from one-field to two-field models

    Get PDF
    In this paper we study the possibility of constructing two-field models from one-field models. The idea is to start with a given one-field model and use the deformation procedure to generate another one-field model, and then couple the two one-field models nontrivially, to get to a two-field model, together with some explicit topological solutions. We show with several distinct examples that the procedure works nicely and can be used generically.Comment: 8 pages; version to appear in Phys. Lett.

    Gaussian quantum Monte Carlo methods for fermions

    Get PDF
    We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application, we calculate finite-temperature properties of the two dimensional Hubbard model.Comment: 4 pages, 3 figures, Revised version has expanded discussion, simplified mathematical presentation, and application to 2D Hubbard mode

    Building analytical three-field cosmological models

    Full text link
    A difficult task to deal with is the analytical treatment of models composed by three real scalar fields, once their equations of motion are in general coupled and hard to be integrated. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called "extension method". The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is within inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters.Comment: 11 pages, and 3 figures, updated version published in EPJ

    New family of potentials with analytical twiston-like solutions

    Full text link
    In this letter we present a new approach to find analytical twiston models. The effective two-field model was constructed by a non-trivial combination of two one field systems. In such an approach we successfully build analytical models which are satisfied by a combination of two defect-like solutions, where one is responsible to twist the molecular chain by 1800180^{\,0}, while the other implies in a longitudinal movement. Such a longitudinal movement can be fitted to have the size of the distance between adjacent molecular groups. The procedure works nicely and can be used to describe the dynamics of several other molecular chains.Comment: 7 pages, 3 figure

    Non-linear Preheating with Scalar Metric Perturbations

    Full text link
    We have studied preheating of field perturbations in a 3-dimensional lattice including the effect of scalar metric perturbations, in two generic models of inflation: chaotic inflation with a quartic potential, and standard hybrid inflation. We have prepared the initial state for the classical evolution of the system with vanishing vector and tensor metric perturbations, consistent with the constraint equations, the energy and momentum constraints. The non-linear evolution inevitably generates vector and tensor modes, and this reflects on how well the constraint equations are fulfilled during the evolution. The induced preheating of the scalar metric perturbations is not large enough to backreact onto the fields, but it could affect the evolution of vector and tensor modes. This is the case in hybrid inflation for some values of the coupling gg and the height of potential V01/4V_0^{1/4}. For example with V01/41015V_0^{1/4} \simeq 10^{15} GeV, preheating of scalar perturbations is such that their source term in the evolution equation of tensor and vector becomes comparable to that of the field anisotropic stress.Comment: 15 pages, 12 eps figure

    Gaussian phase-space representations for fermions

    Get PDF
    We introduce a positive phase-space representation for fermions, using the most general possible multi-mode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behaviour in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.Comment: More references and examples. Much less mathematical materia
    corecore