125 research outputs found

    Renal histomorphology in dogs with pyometra and control dogs, and long term clinical outcome with respect to signs of kidney disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related changes in renal histomorphology are described, while the presence of glomerulonephritis in dogs with pyometra is controversial in current literature.</p> <p>Methods</p> <p>Dogs with pyometra were examined retrospectively for evidence of secondary renal damage and persisting renal disease through two retrospective studies. In Study 1, light microscopic lesions of renal tissue were graded and compared in nineteen dogs with pyometra and thirteen age-matched control bitches. In Study 2, forty-one owners of dogs with pyometra were interviewed approximately 8 years after surgery for evidence ofclinical signs of renal failure in order to document causes of death/euthanasia.</p> <p>Results</p> <p>Interstitial inflammation and tubular atrophy were more pronounced in dogs with pyometra than in the control animals. Glomerular lesions classified as glomerular sclerosis were present in both groups. No unequivocal light microscopic features of glomerulonephritis were observed in bitches in any of the groups.</p> <p>Two bitches severely proteinuric at the time of surgery had developed end stage renal disease within 3 years. In five of the bitches polyuria persisted after surgery. Most bitches did not show signs of kidney disease at the time of death/euthanasia.</p> <p>Conclusion</p> <p>Tubulointerstitial inflammation was observed, but glomerular damage beyond age-related changes could not be demonstrated by light microscopy in the dogs with pyometra. However, severe proteinuria after surgery may predispose to development of renal failure.</p

    Low density of CD3+, CD4+ and CD8+ cells is associated with increased risk of relapse in squamous cell cervical cancer

    Get PDF
    The purpose of this study was to investigate the prognostic value of the primary in situ cellular immune response in cervical squamous cell carcinoma. A study of 102 women treated for stage IB and IIA disease, between 1990 and 2000, was performed. Paraffin-embedded cervical tissue processed at the time of diagnosis was immunostained for CD3+ (T cells), CD4+ (T helper/regulatory T cells) and CD8+ (cytotoxic T cells) cells. Immune cell profile densities were estimated using stereology. Both intra- and peritumoural cell densities were estimated. Using Cox's proportional hazards regression modelling we found an increase in cell density to decrease the risk of relapse for all three cell types. The density of peritumoural CD3+ cells seems to have the strongest potential for predicting relapse. An increase in CD3+ cell density from 795 to 2043 cells per mm2 (25–75 percentile) reduced the hazard ratio to 0.27

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    Get PDF
    The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD

    Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review

    Get PDF
    Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations

    Mechanisms of progression of chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) occurs in all age groups, including children. Regardless of the underlying cause, CKD is characterized by progressive scarring that ultimately affects all structures of the kidney. The relentless progression of CKD is postulated to result from a self-perpetuating vicious cycle of fibrosis activated after initial injury. We will review possible mechanisms of progressive renal damage, including systemic and glomerular hypertension, various cytokines and growth factors, with special emphasis on the renin–angiotensin–aldosterone system (RAAS), podocyte loss, dyslipidemia and proteinuria. We will also discuss possible specific mechanisms of tubulointerstitial fibrosis that are not dependent on glomerulosclerosis, and possible underlying predispositions for CKD, such as genetic factors and low nephron number

    Cancer Induces Cardiomyocyte Remodeling and Hypoinnervation in the Left Ventricle of the Mouse Heart

    Get PDF
    Cancer is often associated with cachexia, cardiovascular symptoms and autonomic dysregulation. We tested whether extracardiac cancer directly affects the innervation of left ventricular myocardium. Mice injected with Lewis lung carcinoma cells (tumor group, TG) or PBS (control group, CG) were analyzed after 21 days. Cardiac function (echocardiography), serum levels of TNF-α and Il-6 (ELISA), structural alterations of cardiomyocytes and their innervation (design-based stereology) and levels of innervation-related mRNA (quantitative RT-PCR) were analysed. The groups did not differ in various functional parameters. Serum levels of TNF-α and Il-6 were elevated in TG. The total length of axons in the left ventricle was reduced. The number of dense core vesicles per axon profile was reduced. Decreased myofibrillar volume, increased sarcoplasmic volume and increased volume of lipid droplets were indicative of metabolic alterations of TG cardiomyocytes. In the heart, the mRNA level of nerve growth factor was reduced whereas that of β1-adrenergic receptor was unchanged in TG. In the stellate ganglion of TG, mRNA levels of nerve growth factor and neuropeptide Y were decreased and that of tyrosine hydroxylase was increased. In summary, cancer induces a systemic pro-inflammatory state, a significant reduction in myocardial innervation and a catabolic phenotype of cardiomyocytes in the mouse. Reduced expression of nerve growth factor may account for the reduced myocardial innervation

    Early influences on cardiovascular and renal development

    Get PDF
    The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh
    corecore