3,251 research outputs found

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    The oldest fossil record of bandicoots (Marsupialia; Peramelemorphia) from the late Oligocene of Australia

    Get PDF
    Two new late Oligocene representatives of the marsupial order Peramelemorphia (bandicoots and bilbies) from the Etadunna Formation of South Australia are described here. Bulungu muirheadae sp. nov., from Zone B (Ditjimanka Local Fauna [LF]), is represented by several dentaries and isolated upper and lower molars. Bulungu campbelli sp. nov., from Zone C (Ngapakaldi LF), is represented by a single dentary and maxilla. Together, they represent the oldest fossil bandicoots described to date. Both are small (estimated body mass o

    On the combination of omics data for prediction of binary outcomes

    Full text link
    Enrichment of predictive models with new biomolecular markers is an important task in high-dimensional omic applications. Increasingly, clinical studies include several sets of such omics markers available for each patient, measuring different levels of biological variation. As a result, one of the main challenges in predictive research is the integration of different sources of omic biomarkers for the prediction of health traits. We review several approaches for the combination of omic markers in the context of binary outcome prediction, all based on double cross-validation and regularized regression models. We evaluate their performance in terms of calibration and discrimination and we compare their performance with respect to single-omic source predictions. We illustrate the methods through the analysis of two real datasets. On the one hand, we consider the combination of two fractions of proteomic mass spectrometry for the calibration of a diagnostic rule for the detection of early-stage breast cancer. On the other hand, we consider transcriptomics and metabolomics as predictors of obesity using data from the Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) study, a population-based cohort, from Finland

    Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    Get PDF
    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO2, GeO2, B2O3, anorthite, diopside, xNa2O–(1-x)SiO2, xPbO–(1-x)SiO2, soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

    On the regularization scheme and gauge choice ambiguities in topologically massive gauge theories

    Full text link
    It is demonstrated that in the (2+1)-dimensional topologically massive gauge theories an agreement of the Pauli-Villars regularization scheme with the other schemes can be achieved by employing pairs of auxiliary fermions with the opposite sign masses. This approach does not introduce additional violation of discrete (P and T) symmetries. Although it breaks the local gauge symmetry only in the regulator fields' sector, its trace disappears completely after removing the regularization as a result of superrenormalizability of the model. It is shown also that analogous extension of the Pauli-Villars regularization in the vector particle sector can be used to agree the arbitrary covariant gauge results with the Landau ones. The source of ambiguities in the covariant gauges is studied in detail. It is demonstrated that in gauges that are softer in the infrared region (e.g. Coulomb or axial) nonphysical ambiguities inherent to the covariant gauges do not arise.Comment: Latex, 13 pages. Replaced mainly to change preprint references to journal one

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    “Cycles upon cycles, stories upon stories” : contemporary audio media and podcast horror’s new frights

    Get PDF
    During the last ten years the ever-fertile horror and Gothic genres have birthed a new type of fright-fiction: podcast horror. Podcast horror is a narrative horror form based in audio media and the properties of sound. Despite association with oral ghost tales, radio drama, and movie and TV soundscapes, podcast horror remains academically overlooked. Podcasts offer fertile ground for the revitalization and evolution of such extant audio-horror traditions, yet they offer innovation too. Characterized by their pre-recorded nature, individualized listening times and formats, often “amateur” or non-corporate production, and isolation from an ongoing media stream more typical of radio or TV, podcasts potentialize the instigation of newer audio-horror methods and traits. Podcast horror shows vary greatly in form and content, from almost campfire-style oral tales, comprising listener-produced and performed content (Drabblecast; Tales to Terrify; NoSleep); to audio dramas reminiscent of radio’s Golden Era (Tales from Beyond the Pale; 19 Nocturne Boulevard); to dramas delivered in radio-broadcast style (Welcome to Night Vale; Ice Box Theatre); to, most recently, dramas, which are themselves acknowledging and exploratory of the podcast form (TANIS; The Black Tapes Podcast; Lime Town). Yet within this broad spectrum, sympathies and conventions arise which often not only explore and expand notions of Gothic sound, but which challenge broader existing horror and Gothic genre norms. This article thus demonstrates the extent to which podcast horror uses its audio form, technology and mediation to disrupt and evolve Gothic/horror fiction, not through a cumulative chronological formulation of podcast horror but through a maintained and alternately synthesized panorama of forms. Herein new aspects of generic narration, audience, narrative and aesthetic emerge. Exploring a broad spectrum of American and British horror podcasts, this article shows horror podcasting to utilize podcasting’s novel means of horror and Gothic distribution/consumption to create fresh, unique and potent horror forms. This article reveals plot details about some of the podcasts examined

    The Distribution of Constituent Charm Quarks in the Hadron

    Full text link
    Using a statistical approach in the framework of non-covariant perturbation theory the distributions for light and charmed quarks in the hadron have been derived, taking into account the mass of the charmed quark. The parameters of the model have been extracted from the comparison with NA3 data on hadroproduction of J/psi particles. A reanalysis of the EMC data on charm production in muon-nucleon scattering has been performed. It has been found in comparison with the conventional source of charmed quarks from photon-gluon fusion, that the EMC data indicate the presence of an additional contribution from deep-inelastic scattering on charmed quarks at large x. The resulting admixture of the Fock states, containing charmed quarks in the decomposition of the proton wave function is of the order of 1%. The approach presented for the excitation of the Fock states with charmed quarks can also be applied to states with beauty quarks as well as to the hadronic component of the virtual photon (resolved photon component).Comment: 23 pages, 4 PostScript figures, Latex2e. In revised version in comparison with the original one all (?) mistypings have been corrected, one more thank has been added and the comparison of the pion and the proton J/psi production is described in more detai
    corecore