65,043 research outputs found

    Optimization of thrust algorithm calibration for Computing System (TCS) for Thrust the NASA Highly Maneuverable Aircraft Technology (HiMAT) vehicle's propulsion system

    Get PDF
    A simplified gross thrust computing technique for the HiMAT J85-GE-21 engine using altitude facility data was evaluated. The results over the full engine envelope for both the standard engine mode and the open nozzle engine mode are presented. Results using afterburner casing static pressure taps are compared to those using liner static pressure taps. It is found that the technique is very accurate for both the standard and open nozzle engine modes. The difference in the algorithm accuracy for a calibration based on data from one test condition was small compared to a calibration based on data from all of the test conditions

    Continuous breakdown of Purcell's scallop theorem with inertia

    Full text link
    Purcell's scallop theorem defines the type of motions of a solid body - reciprocal motions - which cannot propel the body in a viscous fluid with zero Reynolds number. For example, the flapping of a wing is reciprocal and, as was recently shown, can lead to directed motion only if its frequency Reynolds number, Re_f, is above a critical value of order one. Using elementary examples, we show the existence of oscillatory reciprocal motions which are effective for all arbitrarily small values of the frequency Reynolds number and induce net velocities scaling as (Re_f)^\alpha (alpha > 0). This demonstrates a continuous breakdown of the scallop theorem with inertia.Comment: 6 pages, 1 figur

    The hydrogen coverage of interstellar PAHs

    Get PDF
    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments

    Slow Excitation Trapping in Quantum Transport with Long-Range Interactions

    Full text link
    Long-range interactions slow down the excitation trapping in quantum transport processes on a one-dimensional chain with traps at both ends. This is counter intuitive and in contrast to the corresponding classical processes with long-range interactions, which lead to faster excitation trapping. We give a pertubation theoretical explanation of this effect.Comment: 4 pages, 3 figure

    Latitudinal beaming of Jupiter's low frequency radio emissions

    Get PDF
    By comparing RAE-1 and IMP-6 satellite measurements of Jupiter's radio emission near 1MHz with recent Voyager-1 and 2 observations in the same frequency range, the properties of the low frequency radiation pattern over a 10 deg range of latitudes with respect to the Jovian rotation equator can be studied. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspects of earlier ground-based measurements used to infer a sharp beaming pattern for the decameter wavelength emissions. Marked, systematic changes are found in the statistical occurrence probability distributions with system 3 central meridian longitude as the jovigraphic latitude of the observer changes over this range. Simultaneous observations by the two Voyager spacecraft suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer-wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet
    corecore