26 research outputs found

    Planar Large Core Polymer Optical 1x2 and 1x4 Splitters Connectable to Plastic Optical Fiber

    Get PDF
    We report about new approach to design and fabricate multimode 1 x 2 and 1 x 4 Y optical planar power splitter suitable for low-cost short distance optical network. The splitters were designed by beam propagation method using BeamPROP™ software. The dimensions of the splitters were optimized for connecting standard plastic optical fibre with 1 mm diameter. New Norland Optical Adhesives 1625 glues were used as optical waveguide layers and the design structures were completed by CNC engraving on poly(methyl methacrylate) substrate. The best parameters that were achieved with 1x2 splitter were insertion loss around 4.1dB at 650 nm and the coupling ratio 52:48; the best one of the 1x4 splitters had at 650 nm insertion loss around 17.6 dB

    Design of the Novel Wavelength Triplexer Using Multiple Polymer Microring Resonators

    Get PDF
    We report about new design of wavelength triplexer using multiple polymer optical microring resonators. Triplexer consists of two downstream wavelength channels operating at 1490 ± 10 nm, 1555 ± 10 nm and one upstream wavelength channel operating at 1310 ± 50 nm. The parallel coupled double ring resonator was used for separation of the optical signal band at 1555 nm and filtered out signal bands 1310 nm and 1490 nm. The serially coupled triple optical microring resonator was used for separation of the optical signal band at 1490 nm and filtered out signal bands 1310 nm and 1555 nm. The design was done by using FullWAVETM software by the finite-difference time-domain method. Simulation showed that optical losses for band at 1555 nm were -3 dB and crosstalk between signal bands 1555 nm and 1490 nm was 24 dB. Calculated optical losses for channel 1490 nm were less than -2.5 dB and signal bands at 1555 nm was filtered out with less than 18 dB loss. The bands at 1310 nm were fully filtered out from both downstream wavelength channels operating at bands 1490 nm and 1555 nm

    Design and Modeling of Symmetric Three Branch Polymer Planar Optical Power Dividers

    Get PDF
    Two types of polymer-based three-branch symmetric planar optical power dividers (splitters) were designed, multimode interference (MMI) splitter and triangular shape-spacing splitter. By means of modeling the real structures were simulated as made of Epoxy Novolak Resin on silicon substrate, with silica buffer layer and polymethylmethacrylate as protection cover layer. The design of polymer waveguide structure was done by Beam Propagation Method. After comparing properties of both types of the splitters we have demonstrated that our new polymer based triangular shaped splitter can work simultaneously in broader spectrum, the only condition would be that the waveguides are single-mode guiding. It practically means that, what concerns communication wavelengths, it can on principle simultaneously operate at two mainly used wavelengths, 1310 and 1550 nm

    Large Core Three Branch Polymer Power Splitters

    Get PDF
    We report about three branch large core polymer power splitters optimized for connecting standard plastic optical fibers. A new point of the design is insertion of a rectangle-shaped spacing between the input and the central part of the splitter, which will ensure more even distribution of the output optical power. The splitters were designed by beam propagation method using BeamPROP software. Acrylic-based polymers were used as optical waveguides being poured into the Y-grooves realized by computer numerical controlled engraving on poly(methyl methacrylate) substrate. Measurement of the optical insertion losses proved that the insertion optical loss could be lowered to 2.1 dB at 650 nm and optical power coupling ratio could reach 31.8% : 37.3% : 30.9%

    Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Get PDF
    We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength

    Design, Fabrication and Properties of Rib Poly(methylmethacrylimide) Optical Waveguides

    Get PDF
    We report about design, fabrication and properties of the polymer optical waveguides deposited on silica-on-silicon substrate. The design of the waveguides is based on a concept that geometric dimensions of the single mode polymer waveguide are determined by geometrical parameters of the silica layer. The design of the waveguides was schemed for 650 nm, 850 nm, 1310 nm and 1550 nm wavelength. The design of the presented planar waveguides was realized on the bases of modified dispersion equation while the ridge waveguides design was proposed following the Fischbeck concept. Both designs were refined applying RSoft software using beam propagation method. Proposed shapes of the waveguides were etched by standard photolithography process into the silica layers and polymer waveguide layers were subsequently deposited into the treated substrate by spin coating. Poly(methylmethacrylimide) was used as the waveguide core material and polymethylmethacrylate was used as a cover protection layer. Propagation optical loss measurements were done by using the cut-back method and the best samples had optical losses lower than 0.6 dB/cm at 650 nm, 1310 nm and 1550 nm

    Properties of Erbium and Ytterbium Doped Gallium Nitride Layers Fabricated by Magnetron Sputtering

    Get PDF
    We report about some properties of erbium and erbium/ytterbium doped gallium nitride (GaN) layers fabricated by magnetron sputtering onsilicon, quartz and Corning glass substrates. For fabricating GaN layers two types of targets were used - gallium in a stainless steel cup anda Ga2O3 target. Deposition was carried out in the Ar+N2 gas mixture. For erbium and ytterbium doping into GaN layers, erbium metallicpowder and ytterbium powder or Er2O3 and Yb2O3 pellets were laid on the top of the target. The samples were characterized by X-raydiffraction (XRD), photoluminescence spectra and nuclear analytical methods. While the use of a metallic gallium target ensured thedeposition of well-developed polycrystalline layers, the use of gallium oxide target provided GaN films with poorly developed crystals. Bothapproaches enabled doping with erbium and ytterbium ions during deposition, and typical emission at 1 530 nm due to the Er3+ intra-4f 4I13/2 → 4I15/2 transition was observed

    Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Get PDF
    We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD) and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm) and also using a semiconductor laser (λex=980 nm). Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm.&nbsp

    Optical Properties of Erbium and Erbium/Ytterbium Doped Polymethylmethacrylate

    Get PDF
    In this paper we report on the fabrication and properties of Er3 and Er3/Yb3 doped Polymethylmethacrylate (PMMA) layers. The reported layers were fabricated by spin coating on silicon or on quartz substrates. Infrared spectroscopy was used for an investigation of O-H stretching vibration. Measurement were made of the transmission spectra in the wavelength ranges from 350 to 700 nm for the Er3 doped samples and from 900 to 1040 nm for the Yb3 doped samples. The refractive indices were investigated in the spectral range from 300 to 1100 nm using optical ellipsometry and the photoluminescence spectra were measured in the infrared region
    corecore