37 research outputs found

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014

    The design of an optimal Bonus-Malus System based on the Sichel distribution

    Get PDF
    This chapter presents the design of an optimal Bonus-Malus System (BMS) using the Sichel distribution to model the claim frequency distribution. This system is proposed as an alternative to the optimal BMS obtained by the traditional Negative Binomial model [19]. The Sichel distribution has a thicker tail than the Negative Binomial distribution and it is considered as a plausible model for highly dispersed count data. We also consider the optimal BMS provided by the Poisson-Inverse Gaussian distribution (PIG), which is a special case of the Sichel distribution. Furthermore, we develop a generalised BMS that takes into account both the a priori and a posteriori characteristics of each policyholder. For this purpose we consider the generalised additive models for location, scale and shape (GAMLSS) in order to use all available information in the estimation of the claim frequency distribution. Within the framework of the GAMLSS we propose the Sichel GAMLSS for assessing claim frequency as an alternative to the Negative Binomial Type I (NBI) regression model used by Dionne and Vanasse [9, 10]. We also consider the NBI and PIG GAMLSS for assessing claim frequency

    Moral hazard and dynamic insurance data

    No full text
    This paper exploits dynamic features of insurance contracts in the empirical analysis of moral hazard. We first show that experience rating implies negative occurrence dependence under moral hazard: individual claim intensities decrease with the number of past claims. We then show that dynamic insurance data allow to distinguish this moral-hazard effect from dynamic selection on unobservables. We develop nonparametric tests and estimate a flexible parametric model. We find no evidence of moral hazard in French car insurance. Our analysis contributes to a recent literature based on static data that has problems distinguishing between moral hazard and selection and dealing with dynamic features of actual insurance contracts. Methodologically, this paper builds on and extends the literature on state dependence and heterogeneity in event-history data. © 2003 by the European Economic Association
    corecore