287 research outputs found

    Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films

    Full text link
    Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser deposition, of thicknesses down to 40 nm, were studied using infrared transmission and reflection spectroscopy. The complex dielectric responses of polar phonon modes, particularly ferroelectric soft mode, in the films were determined quantitatively. The compressed epitaxial STO films on (100) La0.18Sr0.82Al0.59-Ta0.41O3 substrates (strain 0.9%) show strongly stiffened phonon responses, whereas the soft mode in polycrystalline film on (0001) sapphire substrate shows a strong broadening due to grain boundaries and/or other inhomogeneities and defects. The stiffened soft mode is responsible for a much lower static permittivity in the plane of the compressed film than in the bulk samples.Comment: 11 page

    Origin of the "Waterfall" Effect in Phonon Dispersion of Relaxor Perovskites

    Get PDF
    Inelastic neutron scattering study of the perovskite relaxor ferroelectric PZN:8%PT elucidates the origin of the previously reported unusual kink on the low frequency transverse phonon dispersion curve (known as "waterfall" effect). We show that its position depends on the choice of the Brillouin zone and that the relation of its position to the size of the polar nanoregions is highly improbable. The observation is explained in the framework of a simple model of coupled damped harmonic oscillators representing the acoustic and optic phonon branches.Comment: 4 pages, 6 figures, LaTe

    Central mode and soft mode behavior in PbMg1/Nb2/3O3 relaxor ferroelectric

    Full text link
    The relaxor ferroelectric PbMg1/Nb2/3O3 was investigated by means of broad-band dielectric and Fourier Transform Infrared (FTIR) transmission spectroscopy in the frequency range from 1 MHz to 15 THz at temperatures between 20 and 900 K using PMN films on infrared transparent sapphire substrates. While thin film relaxors display reduced dielectric permittivity at low frequencies, their high frequency intrinsic or lattice response is shown to be the same as single crystal/ceramic specemins. It was observed that in contrast to the results of inelastic neutron scattering, the optic soft mode was underdamped at all temperatures. On heating, the TO1 soft phonon followed the Cochran law with an extrapolated critical temperature equal to the Burns temperature of 670 K and softened down to 50 cm-1. Above 450 K the soft mode frequency leveled off and slightly increased above the Burns temperature. A central mode, describing the dynamics of polar nanoclusters appeared below the Burns temperature at frequencies near the optic soft mode and dramatically slowed down below 1 MHz on cooling below room temperature. It broadened on cooling, giving rise to frequency independent losses in microwave and lower frequency range below the freezing temperature of 200 K. In addition, a new heavily damped mode appeared in the FTIR spectra below the soft mode frequency at room temperature and below. The origin of this mode as well as the discrepancy between the soft mode damping in neutron and infrared spectra is discussed.Comment: 7 pages with 7 figures, submitted to Phys. Rev.

    Ferroelectric and Incipient Ferroelectric Properties of a Novel Sr_(9-x)PbxCe2Ti2O36 (x=0-9) Ceramic System

    Full text link
    Sr_(9-x)PbxCe2Ti12O36 system is derived from the perovskite SrTiO3 and its chemical formula can be written as (Sr_(1-y)Pby)0.75Ce0.167TiO3. We investigated dielectric response of Sr_(9-x)PbxCe2Ti12O36 ceramics (x = 0-9) between 100 Hz and 100 THz at temperatures from 10 to 700 K using low- and high-frequency dielectric, microwave (MW), THz and infrared spectroscopy. We revealed that Sr9Ce2Ti12O36 is an incipient ferroelectric with the R-3c trigonal structure whose relative permittivity e' increases from 167 at 300 K and saturates near 240 below 30 K. The subsequent substitution of Sr by Pb enhances e' to several thousands and induces a ferroelectric phase transition to monoclinic Cc phase for x>=3. Its critical temperature Tc linearly depends on the Pb concentration and reaches 550 K for x=9. The phase transition is of displacive type. The soft mode frequency follows the Barrett formula in samples with x=3. The MW dispersion is lacking and quality factor Q is high in samples with low Pb concentration, although the permittivity is very high in some cases. However, due to the lattice softening, the temperature coefficient of the permittivity is rather high. The best MW quality factor was observed for x=1: Q*f=5800 GHz and e'=250. Concluding, the dielectric properties of Sr_(9- x)PbxCe2Ti12O36 are similar to those of Ba_(1-x)SrxTiO3 so that this system can be presumably used as an alternative for MW devices or capacitors.Comment: subm. to Chem. Mate

    Anisotropic dielectric function in polar nano-regions of relaxor ferroelectrics

    Get PDF
    The paper suggests to treat the infrared reflectivity spectra of single crystal perovskite relaxors as fine-grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly anisotropic in the phonon frequency range and the random orientation of the polarization at nano-scopic scale requires to take into account the inhomogeneous depolarization field. Employing a simple effective medium approximation (Bruggeman symmetrical formula) to dielectric function describing the polar optic modes as damped harmonic oscillators turns out to be sufficient for reproducing all principal features of room temperature reflectivity of PMN. One of the reflectivity bands is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The approach provides a general guide for systematic determination of the polar mode frequencies split by the inhomogeneous polarization at nanometer scale.Comment: 5 pages, 2 figure

    High-frequency dielectric spectroscopy of batio3 core - silica shell nanocomposites: Problem of interdiffusion

    Get PDF
    Three types of BaTiO3 core - amorphous nano-shell composite ceramics were processed from the same core-shell powder by standard sintering, spark-plasma sintering and two-step sintering techniques and characterized by XRD, HRSEM and broad-band dielectric spectroscopy in the frequency range 10^3 - 10^13 Hz including the THz and IR range. The samples differed by porosity and by the amount of interdiffusion from the cores to shells, in correlation with their increasing porosity. The dielectric spectra were also calculated using suitable models based on effective medium approximation. The measurements revealed a strong dielectric dispersion below the THz range, which cannot be explained by the modeling, and whose strength was in correlation with the degree of interdiffusion. We assigned it to an effect of the interdiffusion layers, giving rise to a strong interfacial polarization. It appears that the high-frequency dielectric spectroscopy is an extremely sensitive tool for detection of any gradient layers and sample inhomogeneities even in dielectric materials with negligible conductivity

    Xenon prevents cellular damage in differentiated PC-12 cells exposed to hypoxia

    Get PDF
    BACKGROUND: The neuroprotective effect of xenon has been demonstrated for glutamatergic neurons. In the present study it is investigated if dopaminergic neurons, i.e. nerve-growth-factor differentiated PC-12 cells, are protected as well against hypoxia-induced cell damage in the presence of xenon. RESULTS: Pheochromocytoma cells differentiated by addition of nerve growth factor were placed in a N(2)-saturated atmosphere, a treatment that induced release of dopamine, reaching a maximum after 30 min. By determining extracellular lactate dehydrogenase concentration as marker for concomitant cellular damage, a substantial increase of enzymatic activity was found for N(2)-treated cells. Replacement of N(2 )by xenon in such a hypoxic atmosphere resulted in complete protection against cellular damage and prevention of hypoxia-induced dopamine release. Intracellular buffering of Ca(2+ )using the Ca-chelator 1, 2-bis(2-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester (BAPTA) reduced the neuroprotective effect of xenon indicating the essential participation of intracellular Ca(2+)-ions in the process of xenon-induced neuroprotection. CONCLUSIONS: The results presented demonstrate the outstanding property of xenon to protect neuron-like cells in a hypoxic situation
    • …
    corecore