7,061 research outputs found

    Nonlocal effects in Fock space

    Full text link
    If a physical system contains a single particle, and if two distant detectors test the presence of linear superpositions of one-particle and vacuum states, a violation of classical locality can occur. It is due to the creation of a two-particle component by the detecting process itself.Comment: final version in PRL 74 (1995) 4571; 76 (1996) 2205 (erratum

    Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions

    Full text link
    We derive the energy levels associated with the even-parity wave functions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the boundary conditions at the origin. This problem calls the attention of the students to an inaccurate statement in quantum mechanics textbooks often found in the context of solution of the harmonic oscillator problem.Comment: 9 pages, 3 figure

    Testing quantum superpositions of the gravitational field with Bose-Einstein condensates

    Full text link
    We consider the gravity field of a Bose-Einstein condensate in a quantum superposition. The gravity field then is also in a quantum superposition which is in principle observable. Hence we have ``quantum gravity'' far away from the so-called Planck scale

    Bell's inequality with Dirac particles

    Full text link
    We study Bell's inequality using the Bell states constructed from four component Dirac spinors. Spin operator is related to the Pauli-Lubanski pseudo vector which is relativistic invariant operator. By using Lorentz transformation, in both Bell states and spin operator, we obtain an observer independent Bell's inequality, so that it is maximally violated as long as it is violated maximally in the rest frame.Comment: 7 pages. arXiv admin note: text overlap with arXiv:quant-ph/0308156 by other author

    Cutoff for the noisy voter model

    Get PDF
    Given a continuous time Markov Chain {q(x,y)}\{q(x,y)\} on a finite set SS, the associated noisy voter model is the continuous time Markov chain on {0,1}S\{0,1\}^S, which evolves in the following way: (1) for each two sites xx and yy in SS, the state at site xx changes to the value of the state at site yy at rate q(x,y)q(x,y); (2) each site rerandomizes its state at rate 1. We show that if there is a uniform bound on the rates {q(x,y)}\{q(x,y)\} and the corresponding stationary distributions are almost uniform, then the mixing time has a sharp cutoff at time logS/2\log|S|/2 with a window of order 1. Lubetzky and Sly proved cutoff with a window of order 1 for the stochastic Ising model on toroids; we obtain the special case of their result for the cycle as a consequence of our result. Finally, we consider the model on a star and demonstrate the surprising phenomenon that the time it takes for the chain started at all ones to become close in total variation to the chain started at all zeros is of smaller order than the mixing time.Comment: Published at http://dx.doi.org/10.1214/15-AAP1108 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamical polarizability of graphene beyond the Dirac cone approximation

    Get PDF
    We compute the dynamical polarizability of graphene beyond the usual Dirac cone approximation, integrating over the full Brillouin zone. We find deviations at ω=2t\hbar\omega=2t (tt the hopping parameter) which amount to a logarithmic singularity due to the van Hove singularity and derive an approximate analytical expression. Also at low energies, we find deviations from the results obtained from the Dirac cone approximation which manifest themselves in a peak spitting at arbitrary direction of the incoming wave vector \q. Consequences for the plasmon spectrum are discussed.Comment: 8 pages, 6 figure

    The dimension of the Brownian frontier is greater than 1

    Full text link
    Consider a planar Brownian motion run for finite time. The frontier or ``outer boundary'' of the path is the boundary of the unbounded component of the complement. Burdzy (1989) showed that the frontier has infinite length. We improve this by showing that the Hausdorff dimension of the frontier is strictly greater than 1. (It has been conjectured that the Brownian frontier has dimension 4/34/3, but this is still open.) The proof uses Jones's Traveling Salesman Theorem and a self-similar tiling of the plane by fractal tiles known as Gosper Islands

    Determinantal Processes and Independence

    Full text link
    We give a probabilistic introduction to determinantal and permanental point processes. Determinantal processes arise in physics (fermions, eigenvalues of random matrices) and in combinatorics (nonintersecting paths, random spanning trees). They have the striking property that the number of points in a region DD is a sum of independent Bernoulli random variables, with parameters which are eigenvalues of the relevant operator on L2(D)L^2(D). Moreover, any determinantal process can be represented as a mixture of determinantal projection processes. We give a simple explanation for these known facts, and establish analogous representations for permanental processes, with geometric variables replacing the Bernoulli variables. These representations lead to simple proofs of existence criteria and central limit theorems, and unify known results on the distribution of absolute values in certain processes with radially symmetric distributions.Comment: Published at http://dx.doi.org/10.1214/154957806000000078 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonlocality with less Complementarity

    Full text link
    In quantum mechanics, nonlocality (a violation of a Bell inequality) is intimately linked to complementarity, by which we mean that consistently assigning values to different observables at the same time is not possible. Nonlocality can only occur when some of the relevant observables do not commute, and this noncommutativity makes the observables complementary. Beyond quantum mechanics, the concept of complementarity can be formalized in several distinct ways. Here we describe some of these possible formalizations and ask how they relate to nonlocality. We partially answer this question by describing two toy theories which display nonlocality and obey the no-signaling principle, although each of them does not display a certain kind of complementarity. The first toy theory has the property that it maximally violates the CHSH inequality, although the corresponding local observables are pairwise jointly measurable. The second toy theory also maximally violates the CHSH inequality, although its state space is classical and all measurements are mutually nondisturbing: if a measurement sequence contains some measurement twice with any number of other measurements in between, then these two measurements give the same outcome with certainty.Comment: 6 pages, published versio
    corecore