196 research outputs found
Long Range Forces from the Cosmological Neutrino Background
The cosmological neutrino background will mediate long range forces between
objects. For a background of temperature T, the potential decreases as 1/r^5
for r >> 1/T and as 1/r for r << 1/T. These forces have large spin-dependent
components. If the neutrino background is nonrelativistic, the long range
forces are enhanced by a factor of the inverse neutrino velocity. These long
range forces may provide a method for observing the cosmological neutrino
background.Comment: 14 pages, LATEX, IUHET-249, IUNTC93-1
Neutrino flavor conversion in a neutrino background: single- versus multi-particle description
In the early Universe, or near a supernova core, neutrino flavor evolution
may be affected by coherent neutrino-neutrino scattering. We develop a
microscopic picture of this phenomenon. We show that coherent scattering does
not lead to the formation of entangled states in the neutrino ensemble and
therefore the evolution of the system can always be described by a set of
one-particle equations. We also show that the previously accepted formalism
overcounts the neutrino interaction energy; the correct one-particle evolution
equations for both active-active and active-sterile oscillations contain
additional terms. These additional terms modify the index of refraction of the
neutrino medium, but have no effect on oscillation physics.Comment: 12 pages, 3 figures, minor typos correcte
Neutrino Flavor Evolution Near a Supernova's Core
(The discussion is expanded, and a mistake in the crossing probability is
corrected.)Comment: Preprint IUHET-27
Comments on Neutrino Tests of Special Relativity
We point out that the assumption of Lorentz noninvariance examined recently
by Coleman and Glashow leads to neutrino flavor oscillations which are
phenomenologically equivalent to those obtained by assuming the neutrinos
violate the principle of equivalence. We then comment on the limits on Lorentz
noninvariance which can be derived from solar, atmospheric, and accelerator
neutrino experiments.Comment: 5 pages, Revte
Do many-particle neutrino interactions cause a novel coherent effect?
We investigate whether coherent flavor conversion of neutrinos in a neutrino
background is substantially modified by many-body effects, with respect to the
conventional one-particle effective description. We study the evolution of a
system of interacting neutrino plane waves in a box. Using its equivalence to a
system of spins, we determine the character of its behavior completely
analytically. We find that, if the neutrinos are initially in flavor
eigenstates, no coherent flavor conversion is realized, in agreement with the
effective one-particle description. This result does not depend on the size of
the neutrino wavepackets and therefore has a general character. The validity of
the several important applications of the one-particle formalism is thus
confirmed.Comment: 25 pages, 1 figur
Coherent Neutrino Interactions in a Dense Medium
Motivated by the effect of matter on neutrino oscillations (the MSW effect)
we study in more detail the propagation of neutrinos in a dense medium. The
dispersion relation for massive neutrinos in a medium is known to have a
minimum at nonzero momentum p \sim (G_F\rho)/\sqrt{2}. We study in detail the
origin and consequences of this dispersion relation for both Dirac and Majorana
neutrinos both in a toy model with only neutral currents and a single neutrino
flavour and in a realistic "Standard Model" with two neutrino flavours. We find
that for a range of neutrino momenta near the minimum of the dispersion
relation, Dirac neutrinos are trapped by their coherent interactions with the
medium. This effect does not lead to the trapping of Majorana neutrinos.Comment: 28 pages, 6 figures, Latex; minor changes, one reference added;
version to appear in Phys. Rev.
- …