1,087 research outputs found

    On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations

    Full text link
    We give a well posed initial value formulation of the Baumgarte-Shapiro-Shibata-Nakamura form of Einstein's equations with gauge conditions given by a Bona-Masso like slicing condition for the lapse and a frozen shift. This is achieved by introducing extra variables and recasting the evolution equations into a first order symmetric hyperbolic system. We also consider the presence of artificial boundaries and derive a set of boundary conditions that guarantee that the resulting initial-boundary value problem is well posed, though not necessarily compatible with the constraints. In the case of dynamical gauge conditions for the lapse and shift we obtain a class of evolution equations which are strongly hyperbolic and so yield well posed initial value formulations

    The Well-posedness of the Null-Timelike Boundary Problem for Quasilinear Waves

    Full text link
    The null-timelike initial-boundary value problem for a hyperbolic system of equations consists of the evolution of data given on an initial characteristic surface and on a timelike worldtube to produce a solution in the exterior of the worldtube. We establish the well-posedness of this problem for the evolution of a quasilinear scalar wave by means of energy estimates. The treatment is given in characteristic coordinates and thus provides a guide for developing stable finite difference algorithms. A new technique underlying the approach has potential application to other characteristic initial-boundary value problems.Comment: Version to appear in Class. Quantum Gra

    Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations

    Get PDF
    This paper is concerned with the initial-boundary value problem for the Einstein equations in a first-order generalized harmonic formulation. We impose boundary conditions that preserve the constraints and control the incoming gravitational radiation by prescribing data for the incoming fields of the Weyl tensor. High-frequency perturbations about any given spacetime (including a shift vector with subluminal normal component) are analyzed using the Fourier-Laplace technique. We show that the system is boundary-stable. In addition, we develop a criterion that can be used to detect weak instabilities with polynomial time dependence, and we show that our system does not suffer from such instabilities. A numerical robust stability test supports our claim that the initial-boundary value problem is most likely to be well-posed even if nonzero initial and source data are included.Comment: 27 pages, 4 figures; more numerical results and references added, several minor amendments; version accepted for publication in Class. Quantum Gra

    Tails for the Einstein-Yang-Mills system

    Full text link
    We study numerically the late-time behaviour of the coupled Einstein Yang-Mills system. We restrict ourselves to spherical symmetry and employ Bondi-like coordinates with radial compactification. Numerical results exhibit tails with exponents close to -4 at timelike infinity i+i^+ and -2 at future null infinity \Scri.Comment: 12 pages, 5 figure

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    3D simulations of Einstein's equations: symmetric hyperbolicity, live gauges and dynamic control of the constraints

    Full text link
    We present three-dimensional simulations of Einstein equations implementing a symmetric hyperbolic system of equations with dynamical lapse. The numerical implementation makes use of techniques that guarantee linear numerical stability for the associated initial-boundary value problem. The code is first tested with a gauge wave solution, where rather larger amplitudes and for significantly longer times are obtained with respect to other state of the art implementations. Additionally, by minimizing a suitably defined energy for the constraints in terms of free constraint-functions in the formulation one can dynamically single out preferred values of these functions for the problem at hand. We apply the technique to fully three-dimensional simulations of a stationary black hole spacetime with excision of the singularity, considerably extending the lifetime of the simulations.Comment: 21 pages. To appear in PR

    Bootstrap of kernel smoothing in nonlinear time series

    Get PDF
    Kernel smoothing in nonparametric autoregressive schemes offers a powerful tool in modelling time series. In this paper it is shown that the bootstrap can be used for estimating the distribution of kernel smoothers. This can be done by mimicking the stochastic nature of the whole process in the bootstrap resampling or by generating a simple regression model. Consistency of these bootstrap procedures will be shown

    New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions

    Full text link
    We construct new, efficient, and accurate high-order finite differencing operators which satisfy summation by parts. Since these operators are not uniquely defined, we consider several optimization criteria: minimizing the bandwidth, the truncation error on the boundary points, the spectral radius, or a combination of these. We examine in detail a set of operators that are up to tenth order accurate in the interior, and we surprisingly find that a combination of these optimizations can improve the operators' spectral radius and accuracy by orders of magnitude in certain cases. We also construct high-order dissipation operators that are compatible with these new finite difference operators and which are semi-definite with respect to the appropriate summation by parts scalar product. We test the stability and accuracy of these new difference and dissipation operators by evolving a three-dimensional scalar wave equation on a spherical domain consisting of seven blocks, each discretized with a structured grid, and connected through penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the derivative and dissipation operators can be accessed by downloading the source code for the document. The files are located in the "coeffs" subdirector

    Testing outer boundary treatments for the Einstein equations

    Get PDF
    Various methods of treating outer boundaries in numerical relativity are compared using a simple test problem: a Schwarzschild black hole with an outgoing gravitational wave perturbation. Numerical solutions computed using different boundary treatments are compared to a `reference' numerical solution obtained by placing the outer boundary at a very large radius. For each boundary treatment, the full solutions including constraint violations and extracted gravitational waves are compared to those of the reference solution, thereby assessing the reflections caused by the artificial boundary. These tests use a first-order generalized harmonic formulation of the Einstein equations. Constraint-preserving boundary conditions for this system are reviewed, and an improved boundary condition on the gauge degrees of freedom is presented. Alternate boundary conditions evaluated here include freezing the incoming characteristic fields, Sommerfeld boundary conditions, and the constraint-preserving boundary conditions of Kreiss and Winicour. Rather different approaches to boundary treatments, such as sponge layers and spatial compactification, are also tested. Overall the best treatment found here combines boundary conditions that preserve the constraints, freeze the Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class. Quantum Gra
    • …
    corecore