1,087 research outputs found
On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations
We give a well posed initial value formulation of the
Baumgarte-Shapiro-Shibata-Nakamura form of Einstein's equations with gauge
conditions given by a Bona-Masso like slicing condition for the lapse and a
frozen shift. This is achieved by introducing extra variables and recasting the
evolution equations into a first order symmetric hyperbolic system. We also
consider the presence of artificial boundaries and derive a set of boundary
conditions that guarantee that the resulting initial-boundary value problem is
well posed, though not necessarily compatible with the constraints. In the case
of dynamical gauge conditions for the lapse and shift we obtain a class of
evolution equations which are strongly hyperbolic and so yield well posed
initial value formulations
The Well-posedness of the Null-Timelike Boundary Problem for Quasilinear Waves
The null-timelike initial-boundary value problem for a hyperbolic system of
equations consists of the evolution of data given on an initial characteristic
surface and on a timelike worldtube to produce a solution in the exterior of
the worldtube. We establish the well-posedness of this problem for the
evolution of a quasilinear scalar wave by means of energy estimates. The
treatment is given in characteristic coordinates and thus provides a guide for
developing stable finite difference algorithms. A new technique underlying the
approach has potential application to other characteristic initial-boundary
value problems.Comment: Version to appear in Class. Quantum Gra
Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations
This paper is concerned with the initial-boundary value problem for the
Einstein equations in a first-order generalized harmonic formulation. We impose
boundary conditions that preserve the constraints and control the incoming
gravitational radiation by prescribing data for the incoming fields of the Weyl
tensor. High-frequency perturbations about any given spacetime (including a
shift vector with subluminal normal component) are analyzed using the
Fourier-Laplace technique. We show that the system is boundary-stable. In
addition, we develop a criterion that can be used to detect weak instabilities
with polynomial time dependence, and we show that our system does not suffer
from such instabilities. A numerical robust stability test supports our claim
that the initial-boundary value problem is most likely to be well-posed even if
nonzero initial and source data are included.Comment: 27 pages, 4 figures; more numerical results and references added,
several minor amendments; version accepted for publication in Class. Quantum
Gra
Tails for the Einstein-Yang-Mills system
We study numerically the late-time behaviour of the coupled Einstein
Yang-Mills system. We restrict ourselves to spherical symmetry and employ
Bondi-like coordinates with radial compactification. Numerical results exhibit
tails with exponents close to -4 at timelike infinity and -2 at future
null infinity \Scri.Comment: 12 pages, 5 figure
A Scheme to Numerically Evolve Data for the Conformal Einstein Equation
This is the second paper in a series describing a numerical implementation of
the conformal Einstein equation. This paper deals with the technical details of
the numerical code used to perform numerical time evolutions from a "minimal"
set of data.
We outline the numerical construction of a complete set of data for our
equations from a minimal set of data. The second and the fourth order
discretisations, which are used for the construction of the complete data set
and for the numerical integration of the time evolution equations, are
described and their efficiencies are compared. By using the fourth order scheme
we reduce our computer resource requirements --- with respect to memory as well
as computation time --- by at least two orders of magnitude as compared to the
second order scheme.Comment: 20 pages, 12 figure
3D simulations of Einstein's equations: symmetric hyperbolicity, live gauges and dynamic control of the constraints
We present three-dimensional simulations of Einstein equations implementing a
symmetric hyperbolic system of equations with dynamical lapse. The numerical
implementation makes use of techniques that guarantee linear numerical
stability for the associated initial-boundary value problem. The code is first
tested with a gauge wave solution, where rather larger amplitudes and for
significantly longer times are obtained with respect to other state of the art
implementations. Additionally, by minimizing a suitably defined energy for the
constraints in terms of free constraint-functions in the formulation one can
dynamically single out preferred values of these functions for the problem at
hand. We apply the technique to fully three-dimensional simulations of a
stationary black hole spacetime with excision of the singularity, considerably
extending the lifetime of the simulations.Comment: 21 pages. To appear in PR
Bootstrap of kernel smoothing in nonlinear time series
Kernel smoothing in nonparametric autoregressive schemes offers a powerful tool in modelling time series. In this paper it is shown that the bootstrap can be used for estimating the distribution of kernel smoothers. This can be done by mimicking the stochastic nature of the whole process in the bootstrap resampling or by generating a simple regression model. Consistency of these bootstrap procedures will be shown
New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions
We construct new, efficient, and accurate high-order finite differencing
operators which satisfy summation by parts. Since these operators are not
uniquely defined, we consider several optimization criteria: minimizing the
bandwidth, the truncation error on the boundary points, the spectral radius, or
a combination of these. We examine in detail a set of operators that are up to
tenth order accurate in the interior, and we surprisingly find that a
combination of these optimizations can improve the operators' spectral radius
and accuracy by orders of magnitude in certain cases. We also construct
high-order dissipation operators that are compatible with these new finite
difference operators and which are semi-definite with respect to the
appropriate summation by parts scalar product. We test the stability and
accuracy of these new difference and dissipation operators by evolving a
three-dimensional scalar wave equation on a spherical domain consisting of
seven blocks, each discretized with a structured grid, and connected through
penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the
derivative and dissipation operators can be accessed by downloading the
source code for the document. The files are located in the "coeffs"
subdirector
Testing outer boundary treatments for the Einstein equations
Various methods of treating outer boundaries in numerical relativity are
compared using a simple test problem: a Schwarzschild black hole with an
outgoing gravitational wave perturbation. Numerical solutions computed using
different boundary treatments are compared to a `reference' numerical solution
obtained by placing the outer boundary at a very large radius. For each
boundary treatment, the full solutions including constraint violations and
extracted gravitational waves are compared to those of the reference solution,
thereby assessing the reflections caused by the artificial boundary. These
tests use a first-order generalized harmonic formulation of the Einstein
equations. Constraint-preserving boundary conditions for this system are
reviewed, and an improved boundary condition on the gauge degrees of freedom is
presented. Alternate boundary conditions evaluated here include freezing the
incoming characteristic fields, Sommerfeld boundary conditions, and the
constraint-preserving boundary conditions of Kreiss and Winicour. Rather
different approaches to boundary treatments, such as sponge layers and spatial
compactification, are also tested. Overall the best treatment found here
combines boundary conditions that preserve the constraints, freeze the
Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class.
Quantum Gra
- …