9 research outputs found

    Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction

    No full text
    The capabilities of a synthesized ionic imprinted polymer (IIP), originally prepared for Ni recognition/pre-concentration from seawater, have been evaluated for other trace elements pre-concentration. The polymer has been synthesized by the precipitation polymerization technique using a ternary pre-polymerization complex formed by the template (Ni), the monomer (2-(diethylamino) ethyl methacrylate, DEM) and a non-vinylated chelating agent (8-hydroxyquinoline, 8-HQ). Since the complexing agent (8-HQ) is trapped into the polymeric matrix, but is not linked to the polymer chains, specific interactions between the functional groups (present in the monomer and the complexing agent) and other trace elements rather than Ni may occur. Results have shown that the IIP offers imprinting properties for the template (Ni(II)) and also for Cu(II), Pb(II), Zn(II), As(V) and Cd(II), with analytical recoveries close to 100% for all elements except for As(V) and Cd(II) (around 70%), whereas the non-imprinted polymer (NIP) did not show affinity for any trace element. In addition, the polymer does not interact with alkaline or alkaline-earth metals, so Na, K, Mg and Ca from the seawater salt matrix could be effectively removed. Variables affecting the IIP-solid phase extraction (SPE) process (pH, load flow rate and concentration and volume of the eluting solution) were completely studied. Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have been used as multi-element detectors. Acidified seawater samples must only be treated to fix an alkaline pH (8.5 ± 0.5) and passed through IIP-SPE cartridges. After seawater sample loading (250 mL), analytes were eluted with 2.5 mL of 2.0 M nitric acid, offering a pre-concentration factor of 100. Therefore, the limits of detection (LODs) of the method were 0.14, 0.15, 0.18 and 0.03 μg L-1, for Ni, Cu, Pb and Zn, respectively, when using ICP-OES detection and 0.0022, 0.0065, 0.0040 and 0.009 μg L-1, for Ni, Cu, Pb and Zn, respectively, for ICP-MS detection. Accuracy of the method was assessed by analyzing SLEW-3 (estuarine water), and TM-23.3 and TM-24 (lake water) certified reference materials. © 2009 Elsevier B.V. All rights reserved

    Ionic imprinted polymer for nickel recognition by using the bi-functionalized 5-vinyl-8-hydroxyquinoline as a monomer Application as a new solid phase extraction support

    No full text
    A new ionic imprinted polymer (IIP) for Ni(II) recognition/pre-concentration was prepared via precipitation polymerization using 2-(diethylamino) ethyl methacrylate (DEM) and divinylbenzene (DVB) as a crosslinking agent in the presence of nickel(II) and 5-vynil-8-hydroxyquinoline (5-VHQ) as a bi-functionalized ligand. An important increase on the selectivity of the synthesised IIP for nickel(II) ions was obtained when comparing to the use of 8-hydroxyquinoline (8-HQ) as a ligand. The synthesised IIP was used as a new support for solid phase extraction (SPE) of nickel(II) from seawater before inductively coupled plasma optical emission spectrometry (ICP-OES) detection. Variables affecting the SPE process, such as pH, load and elution flow rates, and concentration and volume of the eluting solution, were fully evaluated. The optimised procedure consists of a sample loading (100 mL of seawater at a pH of 9.0 ± 0.1) through IIP-SPE cartridges containing 300 mg of the synthesised IIP at a flow rate of 3.0 mL min- 1. Elution was performed by passing 2.5 mL of 2.0 M nitric acid at a flow rate of 1.5 mL min- 1, which gave a pre-concentration factor of 40. The limit of detection (LOD) of the method was 0.26 μg L- 1, while the relative standard deviation (RSD) for eleven replicated measurements was 3%. Accuracy of the method was assessed by analyzing SLEW-3 (estuarine water) and TM-23.3 (lake water) certified reference materials. In addition to the selectivity of the synthesised material for nickel(II) ions against other transition metal ions and major alkaline and alkaline-earth metals (Na+, K+, Mg2+ and Ca2+) in seawater, it can be stated that the salt matrix is efficiently removed by using the proposed IIP-SPE procedure. © 2009 Elsevier B.V. All rights reserved

    Synthesis, characterization and evaluation of ionic-imprinted polymers for solid-phase extraction of nickel from seawater

    No full text
    Several nickel ion imprinted polymers were prepared via precipitation polymerization using 4-vinylpyridine or 2-(diethylamino) ethyl methacrylate as monomers (vinylated reagents) and a cross-linking agent divinylbenzene in the presence of nickel(II) alone or nickel(II) and 8-hydroxyquinoline (non-vinylated reagent). For all cases, 2,2′-azobisisobutyronitrile (AIBN) was used as an initiator and an acetonitrile/toluene (31) mixture was chosen as a porogen. After packing the polymer particles into empty SPE cartridges, nickel(II) ions were removed by washing with 50 mL of 2.0 M nitric acid. Characterization of the polymer particles has been carried out by scanning electron microscopy, energy dispersive X-ray fluorescence and elemental analysis. The best nickel imprinting properties were given by polymers synthesized in the presence of 8-hydroxyquinoline and 2-(diethylamino) ethyl methacrylate as a monomer. The optimum pH for quantitative nickel retention was 8.5 ± 0.5, while elution was completed with 2.5 mL of 2.0 M nitric acid. When using polymer masses of 300 mg, sample volumes until 250 mL can be passed through the cartridges without reaching the breakthrough volume. Therefore, a pre-concentration factor of 100 has been reached when eluting with 2.5 mL of the elution solution. Electrothermal atomic absorption spectrometry has been used as a detector for nickel determination. The limit of detection of the method was 0.050 μg L-1 (pre-concentration factor of 100), while the relative standard deviation for eleven replicates was 6%. Accuracy of the method was assessed by analyzing different certified reference materials SLEW-3 (estuarine water) and TM-23.3 and TM-24 (lake water). © 2008 Elsevier B.V. All rights reserved

    Highly selective monitoring of metals by using ion-imprinted polymers

    No full text
    corecore